Analysis of genetic diversity of Moroccan natural carob (Ceratonia siliqua L.) populations using ISSR markers

*Article not assigned to an issue yet

, , , , ,


Research Articles | Published:

E-ISSN: 2229-4473.
Website: www.vegetosindia.org
Pub Email: contact@vegetosindia.org
DOI: 10.1007/s42535-024-01016-w
First Page: 0
Last Page: 0
Views: 1733

Keywords: Carob tree, Natural populations, ISSR markers, Genetic diversity, AMOVA


Abstract


To assess the genetic diversity and structure of Carob tree (Ceratonia siliqua), 12 natural populations representing its main geographical range in Morocco, were examined using ISSR markers. The 18 ISSR primers used produced 182 clear and reproducible bands, of which 141 (76.66%) were polymorphic. Levels of variation were variable by population, and a mean value for PIC of 0.47 indicating high diversity in the studied material was obtained. Moreover, the results of the global AMOVA analysis showed that 74.20% of the total genetic variability resided within populations and the remaining (25.80%) occurring between populations. Besides, hierarchical AMOVA revealed very little genetic differentiation between groups of mountain range, bioclimatic and altitudinal conditions (FCT = 1.4%, FCT = 5% and FCT = 0.1% respectively). The populations were revealed genetically largely differentiated (FST = 0.25) and could be the result of limited gene flow estimated at 0.75. Moreover, geographic distances and genetic distances between populations were correlated (r = 0.276; P < 0.001). This indicates that isolation by distance may have played an important role in shaping the genetic structure of this species. The NJ dendrogram and Bayesian model-based clustering approach identified four groups of populations independently of bioclimate, geographic origin and bioclimate of studied populations. The obtained results provide crucial information on the genetic diversity and structure of this species in Morocco that can be useful for proposing and establishing breeding programs for C. siliqua and creating an effective strategy to preserve this genetic resource.

Carob tree, Natural populations, ISSR markers, Genetic diversity, AMOVA


References


Afif M, Messaoud C, Boulila A, Chograni H, Bejaoui A, Rejeb MN, Boussaid M (2008) Genetic structure of Tunisian natural carob tree (Ceratonia siliqua L.) populations inferred from RAPD markers. Ann For Sci 65(7):710


Ajal EA, Jbir R, Melgarejo P, Hernández F, Haddioui A, Hannachi AS (2014) Efficiency of inter simple sequence repeat (ISSR) markers for the assessment of genetic diversity of Moroccan pomegranate (Punica granatum L.) cultivars. Biochem Syst Ecol 56:24–31


Ajal EA, Jbir R, Legua P, Martínez JJ, Martinez R, Salhi-Hannachi A, Haddioui A (2015) Genetic diversity of Moroccan pomegranate (Punica granatum L.) cultivars using AFLP markers. Aust J Crop Sci 9(1):22–29


Barracosa P, Osório J, Cravador A (2007) Evaluation of fruit and seed diversity and characterization of carob (Ceratonia siliqua L.) cultivars in Algarve region. Sci Hortic 114(4):250–257


Barracosa P, Lima MB, Cravador A (2008) Analysis of genetic diversity in Portuguese Ceratonia siliqua L. cultivars using RAPD and AFLP markers. Sci Hortic 118(3):189–199. https://doi.org/10.1016/j.scienta.2008.06.020


Bolaric S, Müller ID, Vokurka A, Cepo DV, Ruscic M, Srecec S, Kremer D (2021) Morphological and molecular characterization of Croatian carob tree (Ceratonia siliqua L.) germplasm. Turk J Agric For 45(6):807–818


Bouda S, Hernandez LE, Haddioui A (2019) Internal transcribed spacer sequences analysis of genetic variation among and within populations of Atriplex halimus from different bioclimatic zones in Morocco. Acta Bot Hung 61:233–250. https://doi.org/10.1556/034.61.2019.3-4.2


Bouta W, Bouda S, Ait Bella Y, Khachtib Y, El Hansali M, El Rasafi T, Haddioui A (2022) Assessment of genetic diversity of Moroccan ‘Pistacia lentiscus’ L. populations using ISSR markers. Aust J Crop Sci 16(3):365–371


Caruso M, Distefano G, Ye X, La Malfa S, Gentile A, Tribulato E, Roose ML (2008) Generation of expressed sequence tags from carob (Ceratonia siliqua L.) flowers for gene identification and marker development. Tree Genet Genomes 4:869–879


Chesnokov Y, Artem’eva A (2015) Evaluation of the measure of polymorphism. Int J Agric Biol 50:571–578. https://doi.org/10.15389/agrobiology.2015.5.571eng


Custódio L, Patarra J, Alberício F, Neng NR, Nogueira JMF, Romano A (2015) In vitro antioxidant and inhibitory activity of water decoctions of carob tree (Ceratonia siliqua L.) on cholinesterases, α-amylase and α-glucosidase. Nat Prod Res 29(22):2155–2159


El Kahkahi R, Zouhair R, Ait Chitt M, Errakhi R (2014) Morocco carob (Ceratonia siliqua L.) populations: morphological variability of pods and kernel. Int J Pure Appl Biosci 2(4):38–47


Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620. https://doi.org/10.1111/j.1365-294X.2005.02553.x


Excoffier L, Laval G, Schneider S (2005) Arlequin ver 30: an integrated software for population genetics data analysis. Evol Bioinform 1:47–50


Fadel F, El Mehrach K, Chebli B, Fahmi F, El Hafa M, Amri O, Ait Bihi M, Hatimi A, Tahrouch S (2020) Morphometric and physicochemical characteristics of carob pods in three geographical regions of Morocco. SN Appl Sci 2(12):1–8. https://doi.org/10.1007/s42452-020-03963-w


FAOSTAT (2023) Production of Locust beans (carobs): top 10 producers. FAO’S WEBSITE, Rome


Fidan H, Stankov S, Petkova N, Petkova Z, Iliev A, Stoyanova M, Ivanova T, Zhelyazkov N, Ibrahim S, Stoyanova A, Ercisli S (2020) Evaluation of chemical composition, antioxidant potential and functional properties of carob (Ceratonia siliqua L.) seeds. J Food Sci Technol 57(7):2404–2413


Govindaraj M, Vetriventhan M, Srinivasan M (2015) Importance of genetic diversity assessment in crop plants and its recent advances: an overview of its analytical perspectives. Genet Res Int 2015:431487


Hamrick JL, Godt MJW, Sherman-Broyles SL (1992) Factors influencinglevels of genetic diversity in woody plant species. New For 6(1–4):95–124. https://doi.org/10.1007/BF00120641


Kabiri G, Bouda S, Elhansali M, Haddioui A (2019) Genetic diversity and structure of walnut (Juglans regia L.) genotypes from Middle and High Atlas Mountains of Morocco as investigated by Inter-Simple sequence repeat (ISSR) markers. Aust J Crop Sci 13(2):1983–1991


Kassout J, Hmimsa Y, El Fatehi S, El Ouahrani A, Kadaoui K, Chakkour S, Ariza-Mateos D, Palacios-Rodríguez G, Navarro-Cerrillo R, Ater M (2022) Image analysis of Moroccan carob seeds (Ceratonia siliqua L.) revealed substantial intraspecific variations depending on climate and geographic origin. Ecol Process 11(1):34


Keles H, Pinar H, Unlu M, Ilhan G, Bozhuyuk RM, Ercisli S (2022) Molecular characterization of wild carob (Ceratonia siliqua L.) genotypes by sequence-related amplified polymorphism (SRAP) techniques in turkey. Genetika 54(2):613–624


Khachtib Y, Bouda S, Ait Bella Y, Zinelabidine LH, Haddioui A (2023) Use of ISSR markers for assessing genetic diversity of apple (Malus × domestica) cultivars growing in Morocco. Vegetos. https://doi.org/10.1007/s42535-023-00712-3


Kivçak B, Mert T, Öztürk HT (2002) Antimicrobial and cytotoxic activities of Ceratonia siliqua L. extracts. Turc J Biol 26(4):197–200


Konaté I, Filali-Maltouf A, Berraho EB (2007) Diversity analysis of Moroccan carob (Ceratonia siliqua L.) accessions using phenotypic traits and RAPD markers. Acta Bot Malacit 32:79–90. https://doi.org/10.24310/abm.v32i0.7031


Konate I, El-Bekkay B, Filali-Maltouf A (2009) Inter-simple sequence repeat markers variation among natural accessions of Moroccan carob tree (Ceratonia siliqua). Int J Agric Biol 11(2):168–172


Kopelman NM, Mayzel J, Jakobsson M, Rosenberg NA, Mayrose I (2015) Clumpak: a program for identifying clustering modes and packaging population structure inferences across K. Mol Ecol Resour 15(5):1179–1191


La Malfa S, Avola C, Brugaletta M, La Rosa G, Muratore G (2012) Morphological and technological characterization of different carob cultivars in Sicily. Acta Hortic 940:207–212


La Malfa S, Currò S, Douglas AB, Brugaletta M, Caruso M, Gentile A (2014) Genetic diversity revealed by EST-SSR markers in carob tree (Ceratonia siliqua L.). Biochim Syst Ecol 55:205–211


Laakili A, Belkadi B, Medraoui L, Alami M, Yatrib C, Pakhrou O, Makhloufi M, El Antry S, Laamarti A, Filali-Maltouf A (2018) Diversity and spatial genetic structure of natural Moroccan Quercus susber L. assessed by ISSR markers for conservation. Physiol Mol Biol Plants 24(4):643–654


Laaraj S, Salmaoui S, Addi M, El-Rhouttais C, Tikent A, Elbouzidi A et al (2023) Carob (Ceratonia siliqua L.) seed constituents: a comprehensive review of composition, chemical profile, and diverse applications. J Food Qual. https://doi.org/10.1155/2023/3438179


Mahfoud H, Ameen T, Kazngi F, Nasser S (2018) Morphological and genetic variability of natural Syrian carob (Ceratonia siliqua L.). SSRG Int J Agric Environ Sci 5:70–76


Mansoory A, Khademi O, Naji AM, Rohollahi I, Sepahvand E (2022) Evaluation of genetic diversity in three Diospyros species, collected from different regions in Iran, using ISSR and SCoT molecular markers. Int J Fruit Sci 22(1):235–248. https://doi.org/10.1080/15538362.2022.2034563


Nybom H, Bartish IV (2000) Effects of life history traits and sampling strategies on genetic diversity estimates obtained with RAPD markers in plants. Perspect Plant Ecol Evol Syst 3(2):93–114


Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155(2):945–959


Rabah S, El Bouzdoudi B, L’bachir El Kbiach M, Badoc A, Lamarti A, Abdelfettah M (2016) Micropropagation of Carob tree (Ceratonia siliqua L.) by cotyledonary buds. J Mater Environ Sci 7(12):4850–4859


Rohlf FJ (2001) Comparative methods for the analysis of continuous variables: geometric interpretations. Evolution 55(11):2143–2160


Salih G, Jilal A (2020) Agro-morphological and quality attributes of Moroccan carob. Morocc J Agric Sci 1(1):20–25


Slatkin M (1981) Estimating levels of gene flow in natural populations. J Genet 99(2):323–335. https://doi.org/10.1093/genetics/99.2.323


Slatkin M (1985) Gene flow in natural populations. Annu Rev Ecol Evol Syst 16(1):393–430


Talhouk SN, Van Breugel P, Zurayk R, Al-Khatib A, Estephan J, Ghalayini A, Debian N, Lychaa D (2005) Status and prospects for the conservation of remnant semi-natural carob Ceratonia siliqua L. populations in Lebanon. For Ecol Manag 206(1–3):49–59. https://doi.org/10.1016/j.foreco.2004.10.053


Tucker SC (1992) The developmental basis for sexual expression in Ceratonia siliqua (Leguminosae: Caesalpinioideae: Cassieae). Am J Bot 79(3):318–327


Viruel J, Le Galliot N, Pironon S, Nieto Feliner G, Suc JP, Lakhal-Mirleau F, Juin M, Selva M, Bou Dagher Kharrat M, Ouahmane L, La Malfa S, Diadema K, Sanguin H, Médail F, Baumel A (2020) A strong east–west Mediterranean divergence supports a new phylogeographic history of the carob tree (Ceratonia siliqua, Leguminosae) and multiple domestications from native populations. J Biogeogr 47(2):460–471






















 


Author Information


Laboratory of Agro-Industrial and Medical Biotechnologies, Faculty of Sciences and Technics, Sultan Moulay Slimane University, Beni Mellal, Morocco