Antioxidant activity, bioavailability and toxicity evaluation, density functional theory, molecular dynamics, and molecular simulation of Neotinea tridentata flower extract

*Article not assigned to an issue yet

, , , , , ,


Research Articles | Published:

E-ISSN: 2229-4473.
Website: www.vegetosindia.org
Pub Email: contact@vegetosindia.org
DOI: 10.1007/s42535-025-01464-y
First Page: 0
Last Page: 0
Views: 4

Keywords: Antioxidant activity, Toxicity evaluation, Density functional theory, n Neotinea tridentatan , Molecular dynamics, Molecular simulation


Abstract


This study aimed to investigate both the experimental (antioxidant activity, phytochemical content, and chemical profile) and computational analyses (molecular docking, DFT, toxicity profiling, and molecular dynamics) of the flower extract of Neotinea tridentata. The flowers of N. tridentata were extracted with methanol, and the antioxidant activity of the resulting extract was evaluated. Total phenolic, flavonoid, flavonol, and tannin contents were quantified using spectrophotometric methods. Additionally, the chemical profile was characterized by GC-MS; advanced computational analyses, including Absorption, Distribution, Metabolism, Excretion, And Toxicity (ADMET) predictions (SwissADME), Density functional theory (DFT) calculations (Gaussian), molecular docking (AutoDock Vina), and molecular dynamics simulations (GROMACS), were performed using the respective software programs. The methanol extract of N. tridentata exhibited strong antioxidant activity (DPPH IC₅₀: 52.05 ± 3.91 µg/mL), outperforming BHT (IC₅₀: 230 ± 10 µg/mL). The total phenolic, flavonoid, flavonol, and tannin contents were found to be 23.65 ± 2.17 mg GAE/g, 14.44 ± 0.13 mg QE/g, 25.45 ± 1.46 mg QE/g, and 2.08 ± 0.03 mg GAE/g, respectively. Gas chromatography-mass spectrometry (GC-MS) analysis revealed 18 compounds, with butanoic acid, 2-chloro-3-oxo-, methyl ester (20.39%) and xanthosine (10.20%) as major constituents. Fatty acid profiling identified cis-8,11,14-eicosatrienoic acid (20.80%) and palmitic acid (16.37%) as predominant. Molecular docking studies showed high binding affinities of key compounds, such as − 8.4 kcal/mol for tyrosinase and − 8.0 kcal/mol for xanthine oxidase. DFT analysis indicated low HOMO–LUMO gaps (e.g., 3.26 eV), suggesting high chemical reactivity and antioxidant potential. ADMET predictions indicated favorable oral bioavailability and low toxicity for major constituents. Molecular dynamics simulations (100 ns) confirmed the stability of ligand–protein complexes with RMSD values below 2.5 Å. These findings suggest that N. tridentata, with its strong antioxidant capacity and favorable drug-likeness profiles obtained through computational approaches, represents a promising candidate for further pharmacological development.

Antioxidant activity, Toxicity evaluation, Density functional theory, n                     Neotinea tridentatan                  , Molecular dynamics, Molecular simulation


References


Abraham MJ, Murtola T, Schulz R, Páll S, Smith JC, Hess B, Lindahl E (2015) GROMACS: high performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 1:19–25. https://doi.org/10.1016/j.softx.2015.06.001


Addam K, Kebbe ID, Bou-Hamdan M, Hout K (2014) Neotinea tridentata var. Libanotica (Orchidaceae), A new variety from Lebanon. J Bot Res 5(1):35–38


Anza M, Endale M, Cardona L, Cortes D, Eswaramoorthy R, Zueco J, Abarca B (2021) Antimicrobial activity, in Silico molecular docking, admet and Dft analysis of secondary metabolites from roots of three Ethiopian medicinal plants. Adv Appl Bioinf Chem 14:117–132. https://doi.org/10.2147/AABC.S323657


Aytar EC (2024) Antioxidant and antimicrobial properties of stachys maritima via quantum Dots and molecular Docking. Chem Biodivers 21(10):e202401057. https://doi.org/10.1002/CBDV.202401057


Aytar EC, Kömpe YÖ (2021) Orkidelerin Geleneksel kullanımları, fitokimyasal içerikleri ve Biyolojik aktiviteleri. Black Sea J Eng Sci 4(3):141–152


Aytar EC, Kömpe YÖ (2025) Ex vitro symbiotic seed germination, antioxidant activity, and in Silico molecular Docking of anacamptis laxiflora (Orchidaceae). South Afr J Bot 181:468–484


Basılı T, Aytar EC, Miranda MLD, Şentürk B, Kömpe YÖ (2025) Quantum insights into fatty acids, antioxidant mechanisms, and molecular Docking studies in anacamptis papilionacea. Lipids


Begum AJN, Govindaraj M, Maheswari KM, Raamji S, Sivaraman RK, Michael HSR, Lingam SB (2024) In Silico Docking and dynamics of selected secondary metabolites of albizia Lebbeck against androgen receptor (ar) for the treatment of prostate cancer. J Microbiol Biotechnol Food Sci 14:e10608–e10608. https://doi.org/10.55251/JMBFS.10608


Brand-Williams W, Cuvelier ME, Berset C (1995) Use of a free radical method to evaluate antioxidant activity. LWT - Food Sci Technol 28:25–30. https://doi.org/10.1016/S0023-6438(95)80008-5


Cazar ME, Abad DH, Idrovo AM, Barrera DA (2023) Assessment of antioxidant activities of epidendrum secundum jacq., a terrestrial Orchid from Southern Ecuadorian highlands. South Afr J Bot 154:380–386. https://doi.org/10.1016/J.SAJB.2023.01.050


Chand MB, Paudel MR, Pant B (2016) The antioxidant activity of selected wild orchids of Nepal. J Coastal Life Med 4(9):731–736. https://doi.org/10.12980/jclm.4.2016J6-141


Darden T, York D, Pedersen L (1993) Particle mesh ewald: an N·log(N) method for Ewald sums in large systems. J Chem Phys 98:10089–10092. https://doi.org/10.1063/1.464397


Dewanto V, Xianzhong W, Adom KK, Liu RH (2002) Thermal processing enhances the nutritional value of tomatoes by increasing total antioxidant activity. J Agric Food Chem 50:3010–3014. https://doi.org/10.1021/JF0115589


Feng T, Zhao R, Sun F et al (2019) TXNDC9 regulates oxidative stress-induced androgen receptor signaling to promote prostate cancer progression. Oncogene 2019 39(2):356–367. https://doi.org/10.1038/s41388-019-0991-3


Fiehn O (2016) Metabolomics by gas chromatography–mass spectrometry: combined targeted and untargeted profiling. Curr Protoc Mol Biol 114 30.4.1–30.4.32. https://doi.org/10.1002/0471142727.MB3004S114


Fu L, Shi S, Yi J et al (2024) ADMETlab 3.0: an updated comprehensive online ADMET prediction platform enhanced with broader coverage, improved performance, API functionality and decision support. Nucleic Acids Res 52:W422–W431. https://doi.org/10.1093/NAR/GKAE236


Ghahremanian S, Rashidi MM, Raeisi K, Toghraie D (2022) Molecular dynamics simulation approach for discovering potential inhibitors against SARS-CoV-2: A structural review. J Mol Liq 354:118901. https://doi.org/10.1016/J.MOLLIQ.2022.118901


González-Paramás AM, Esteban-Ruano S, Santos-Buelga C, de Pascual-Teresa S, Rivas-Gonzalo JC (2003) Flavanol content and antioxidant activity in winery byproducts. J Agric Food Chem 52:234–238. https://doi.org/10.1021/JF0348727


Hajimahmoodi M, Moghaddam G, Ranjbar AM, Khazani H, Sadeghi N, Oveisi MR, Jannat B (2013) Total phenolic, flavonoids, tannin content and antioxidant power of some Iranian pomegranate flower cultivars (Punica granatum L). Am J Plant Sci 04:1815–1820. https://doi.org/10.4236/AJPS.2013.49223


Hess B, Bekker H, Berendsen HJC, Fraaije JGEM (1997) LINCS: A linear constraint solver for molecular simulations. J Comput Chem 18:1463–1472.


Hossain MM (2011) Therapeutic orchids: traditional uses and recent advances—an overview. Fitoterapia 82(2):102–140


Kanlayavattanakul M, Lourith N, Chaikul P (2018) Biological activity and phytochemical profiles of dendrobium: a new source for specialty cosmetic materials. Ind Crops Prod 120:61–70. https://doi.org/10.1016/J.INDCROP.2018.04.059


Khojah H, Ahmed SR, Alharbi SY, AlSabeelah KK, Alrayyes HY, Almusayyab KB, Qasim S (2024) Skin anti-aging potential of launaea procumbens extract: antioxidant and enzyme Inhibition activities supported by ADMET and molecular Docking studies. Saudi Pharm J 32:102107. https://doi.org/10.1016/J.JSPS.2024.102107


Kotiloğlu D, Acet T, Özcan K (2020) Phytochemical profile and biological activity of a therapeutic Orchid from anatolia: dactylorhiza Romana subsp. Georgica. J Food Meas Charact 14:3310–3318. https://doi.org/10.1007/S11694-020-00566-2/TABLES/8


Lemak AS, Balabaev NK (1994) On the berendsen thermostat. Mol Simul 13:177–187. https://doi.org/10.1080/08927029408021981


Longchar TB, Deb CR (2021) Comparative analysis of nutraceutical potential phytochemicals and antioxidant activities in different parts of wild and in vitro regenerated plantlets of dendrobium heterocarpum wall. Ex lindl.: a medicinal Orchid. J Pharma Phyto 10(4):331–336. https://doi.org/10.22271/PHYTO.2021.V10.I4D.14169


Mark P, Nilsson L (2001) Structure and dynamics of the TIP3P, SPC, and SPC/E water models at 298 K. J Phys Chem A 105:9954–9960. https://doi.org/10.1021/jp003020w


Matović M, Nikolić B, Đelić G, Marković M (2010) Natural potentials of the medicinal plants from the Orchidaceae family with mucus as the main ingredients from Zlatar mountain. Biol Nyssana 1:43–47


Michmerhuizen AR, Spratt DE, Pierce LJ, Speers CW (2020) ARe we there yet? Understanding androgen receptor signaling in breast cancer. npj Breast Cancer 2020 6:1 6:1–19. https://doi.org/10.1038/s41523-020-00190-9


Mincheva I, Petrova A, Yordanova M, Kozuharova E (2018) Is the traditional use of salep in the Bulgarian rhodopes hazardous for the wild populations of terrestrial orchids. Flora Mediterr 28:399–418


Minh TN, Khang DT, Tuyen PT, Minh LT, Anh LH, Quan NV, Xuan TD (2016) Phenolic compounds and antioxidant activity of phalaenopsis Orchid hybrids. Antioxidants 5(3):31. https://doi.org/10.3390/ANTIOX5030031


Mozaffarian D (2016) Dietary and policy priorities for cardiovascular disease, diabetes, and obesity: a comprehensive review. Circulation 133:187–225. https://doi.org/10.1161/CIRCULATIONAHA.115.018585


Natta S, Mondol MSA, Pal K, Mandal S, Sahana N, Pal R, NS K (2022) Chemical composition, antioxidant activity and bioactive constituents of six native endangered medicinal Orchid species from north-eastern Himalayan region of India. South Afr J Bot 150:248–259. https://doi.org/10.1016/J.SAJB.2022.07.020


Niu Z, Xiao X, Wu W, Cai Q, Jiang Y, Jin W, Chen H (2024) PharmaBench: enhancing ADMET benchmarks with large Language models. Sci Data 11:1–15. https://doi.org/10.1038/S41597-024-03793-0;SUBJMETA=154,309,606,630,631;KWRD=CHEMINFORMATICS,COMPUTATIONAL+CHEMISTRY


Olubode SO, Bankole MO, Akinnusi PA, Adanlawo OS, Ojubola KI, Nwankwo DO, Ayodele AO (2022) Molecular modeling studies of natural inhibitors of androgen signaling in prostate cancer. Cancer Inf 21:11769351221118556. https://doi.org/10.1177/11769351221118556


Ouma RBO, Ngari SM, Kibet JK (2024) A review of the current trends in computational approaches in drug design and metabolism. Discover Public Health 21(1):1–31. https://doi.org/10.1186/S12982-024-00229-3


Ozbucak TB, Kutbay HG, Akcın OE (2006) The contributıon of Wıld edible plants to human nutrıtion in the black sea Regıon of Turkey. Ethnobotanical Leaflets 2006(1):10


Parrinello M, Rahman A (1981) Polymorphic transitions in single crystals: A new molecular dynamics method. J Appl Phys 52:7182–7190. https://doi.org/10.1063/1.328693


Paul SK, Saddam M, Rahaman KA, Choi JG, Lee SS, Hasan M (2022) Molecular modeling, molecular dynamics simulation, and essential dynamics analysis of grancalcin: an upregulated biomarker in experimental autoimmune encephalomyelitis mice. Heliyon 8:e11232. https://doi.org/10.1016/J.HELIYON.2022.E11232


Pérez-Torres I, Castrejón-Téllez V, Soto ME, Rubio-Ruiz ME, Manzano-Pech L, Guarner-Lans V (2021) Oxidative stress, plant natural antioxidants, and obesity. Int J Mol Sci 22:1786. https://doi.org/10.3390/IJMS22041786


Post GE, Post GE (1896) Flora of syria, palestine, and sinai: from the Taurus to Ras muhammad, and from the mediterranean sea to the Syrian desert, 1st edn. Syrian Protestant College, Beirut, Syria, pp 1–512


Saini RK, Prasad P, Shang X, Keum YS (2021) Advances in lipid extraction Methods—A review. Int J Mol Sci 22:13643. https://doi.org/10.3390/IJMS222413643


Sezik EE (1984) Orkidelerimiz: Türkiye’nin orkideleri. Sandoz kültür yayınları


Shanko SS, Badessa TS, Tura AM (2024) Method development and validation for the quantitative determination of total flavonoids through the complexation of iron (III) and its application in real sample. Anal Chim Acta 1301:342443. https://doi.org/10.1016/J.ACA.2024.342443


Shiota M, Ushijima M, Tsukahara S, Nagakawa S, Okada T, Tanegashima T, Eto M (2024) Oxidative stress in peroxisomes induced by androgen receptor Inhibition through peroxisome proliferator–activated receptor promotes enzalutamide resistance in prostate cancer. Free Radic Biol Med 221:81–88. https://doi.org/10.1016/J.FREERADBIOMED.2024.05.030


Singleton VL, Orthofer R, Lamuela-Raventós RM (1999) Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. Methods Enzymol 299:152–178. https://doi.org/10.1016/S0076-6879(99)99017-1


Sousa da Silva AW, Vranken WF (2012) ACPYPE - AnteChamber python parser interface. BMC Res Notes 5:367. https://doi.org/10.1186/1756-0500-5-367


Sowerby J (1863) English botany, or coloured figures of British plants, 12 edn. R. Hardwicke, London, pp 1–1922


Tegegn DF, Belachew HZ, Salau AO (2024) DFT/TDDFT calculations of geometry optimization, electronic structure and spectral properties of clevudine and Telbivudine for treatment of chronic hepatitis B. Sci Rep 14:1–19. https://doi.org/10.1038/S41598-024-58599-2;SUBJMETA=1647,45,61,631;KWRD=BIOCHEMISTRY,BIOLOGICAL+TECHNIQUES,BIOTECHNOLOGY


Trott O, Olson AJ (2010) AutoDock vina: improving the speed and accuracy of Docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem 31:455–461. https://doi.org/10.1002/JCC.21334


Valdés-Tresanco MS, Valdés-Tresanco ME, Valiente PA, Moreno E (2021) gmx_MMPBSA: a new tool to perform end-state free energy calculations with GROMACS. J Chem Theory Comput 17:6281–6291. https://doi.org/10.1021/acs.jctc.1c00645




 


Author Information


Faculty of Agriculture, Department of Horticulture, Usak University, Uşak, Türkiye