Ascorbic acid mediated mitigation of drought effects on growth, physiology, and essential oil profile in culantro (Eryngium foetidum L.)

*Article not assigned to an issue yet

, , , , , , , , ,


Research Articles | Published:

Print ISSN : 0970-4078.
Online ISSN : 2229-4473.
Website:www.vegetosindia.org
Pub Email: contact@vegetosindia.org
Doi: 10.1007/s42535-024-00880-w
First Page: 0
Last Page: 0
Views: 944


Keywords: Antioxidant, Aromatic plant, Bioregulator, Dodecanal, Medicinal species


Abstract


The negative effects of drought can be reduced by the application of ascorbic acid (AsA), an important non-enzymatic antioxidant in plants. Culantro (Eryngium foetidum L.) is a perennial leafy herb rich in essential oils, used in both culinary and traditional medicine. In this study, we assessed the action of AsA on the growth, morphophysiology, and essential oil profile of culantro plants under water stress. For this purpose, plants were cultivated under well-irrigated and drought conditions, and sprayed with AsA (100 µM) or water (control). Drought reduced growth and FV/FM, and increased transpiration and pigment concentration. AsA, on the other hand, restored pigment concentration to non-stress conditions. Furthermore, drought and exogenous AsA led to changes in the essential oil profile. The application of AsA and drought modulated qualitatively the essential oil profile in culantro, with dodecanal being the compound that most contributed to this profile separation. Thus, the application of 100 µM AsA is a possible strategy for modifying the production of compounds in culantro. This is the first report that exogenous AsA and drought affect the growth and essential oil composition of culantro. These results offer new insights and contribute to understanding the effects of AsA on drought mitigation, as well as its modulation of the essential oil profile in aromatic plant species.


Antioxidant, Aromatic plant, Bioregulator, Dodecanal, Medicinal species


*Get Access

(*Only SPR Members can get full access. Click Here to Apply and get access)

Advertisement

References


Ahluwalia O, Singh PC, Bhatia R (2021) A review on drought stress in plants: implications, mitigation and the role of plant growth promoting rhizobacteria. Resour Environ Sustain 5:100032. https://doi.org/10.1016/j.resenv.2021.100032





Badr A, Brüggemann W (2020) Comparative analysis of drought stress response of maize genotypes using chlorophyll fluorescence measurements and leaf relative water content. Photosynthetica 58:38–645. https://doi.org/10.32615/ps.2020.014


Bandurska H (2022) Drought stress responses: coping Strategy and Resistance. Plants 11:922. https://doi.org/10.3390/plants11070922


Camas-Reyes A, Vuelvas-Nolasco R, Cabrera-Ponce JL et al (2022) Effect of different cytokinins on shoot outgrowth and bioactive compounds profile of lemograss essential oil. Int J Plant Biol 13:298–314. https://doi.org/10.3390/ijpb13030025


Caverzan A, Passaia G, Rosa SB et al (2012) Plant responses to stresses: role of ascorbate peroxidase in the antioxidant protection. Genet Mol Biol 35:1011–1019. https://doi.org/10.1590/S1415-47572012000600016


Chen D, Wang S, Cao B et al (2016) Genotypic variation in growth and physiological response to drought stress and re-watering reveals the critical role of recovery in drought adaptation in maize seedlings. Front Plant Sci 6:1241. https://doi.org/10.3389/fpls.2015.01241


Claeys H, Inzé D (2013) The agony of choice: how plants balance growth and survival under water-limiting conditions. Plant Physiol 162:1768–1779. https://doi.org/10.1104/pp.113.220921


Costa ASV, Hott MC, Horn AH (2020) Management of citronella (Cymbopogon winterianus Jowitt ex Bor) for the production of essential oils. SN Appl Sci 2:2132. https://doi.org/10.1007/s42452-020-03949-8


El-Boukhari MEM, Barakate M, Drissi B, Bouhia Y, Lyamlouli K (2023) Seaweed extract biostimulants differentially act in Mitigating Drought stress on Faba Bean (Vicia faba L). J Plant Growth Regul 42:5642–5652. https://doi.org/10.1007/s00344-023-10945-w


El-Beltagi HS, Sulaiman, Mohamed MEM, Ullah S, Shah S (2022) Effects of ascorbic acid and/or α-Tocopherol on agronomic and physio-biochemical traits of oat (Avena sativa L.) under Drought Condition. Agronomy 12:2296. https://doi.org/10.3390/agronomy12102296





Gholinezhad E (2020) Impact of drought stress and stress modifiers on water use efficiency, membrane lipidation indices, and water relationship indices of pot marigold (Calendula officinalis L). Rev Bras Bot 43:747–759. https://doi.org/10.1007/s40415-020-00651-2


Glynn P, Fraser C, Gillian A (2003) Foliar salt tolerance of Acer genotypes using chlorophyll fluorescence. Arboric J 29:61–65


Gomes F, Tahara EB, Busso C, Kowaltowski AJ, Barros MH (2013) Nde1 deletion improves mitochondrial DNA maintenance in Saccharomyces cerevisiae coenzyme Q mutants. Biochem J 449:595–603. https://doi.org/10.1042/BJ20121432


Hazzoumi Z, Moustakime Y, Elharchli E, Joutei KA (2015) Effect of arbuscular mycorrhizal fungi (AMF) and water stress on growth, phenolic compounds, glandular hairs, and yield of essential oil in basil (Ocimum gratissimum L). Chem Biol Technol Agric 2:1–11. https://doi.org/10.1186/s40538-015-0035-3


Hemmati K, Ebadi A, Khomari S, Sedghi M (2018) Influence of ascorbic acid and 24-epibrassinolide on physiological characteristics of pot marigold under water-stress condition. J Plant Interact 13:364–372. https://doi.org/10.1080/17429145.2018.1483033


Henschel JM, Soares VA, Figueiredo MC et al (2023) Radish (Raphanus sativus L.) growth and gas exchange responses to exogenous ascorbic acid and irrigation levels. Vegetos 36:566–574. https://doi.org/10.1007/s42535-022-00422-2


Jiang SY, Jin J, Sarojam R, Ramachandran S (2019) A comprehensive survey on the terpene synthase gene family provides new insight into its evolutionary patterns. Genome Biol Evol 11:2078–2098. https://doi.org/10.1093/gbe/evz142


Kalaji HM, Jajoo A, Oukarroum A et al (2016) Chlorophyll a fluorescence as a tool to monitor physiological status of plants under abiotic stress conditions. Acta Physiol Plant 38:102. https://doi.org/10.1007/s11738-016-2113-y


Khalid MF, Huda S, Yong M et al (2023) Alleviation of drought and salt stress in vegetables: crop responses and mitigation strategies. Plant Growth Regul 99:177–194. https://doi.org/10.1007/s10725-022-00905-x


Khan AF, Mujeeb F, Aha F, Farooqi A (2015) Effect of plant growth regulators on growth and essential oil content in palmarosa (Cymbopogon martini). Asian J Pharm Clin Res 8:373–376


Khazaei Z, Estaji A (2020) Effect of foliar application of ascorbic acid on sweet pepper (Capsicum annuum) plants under drought stress. Acta Physiol Plant 42:118. https://doi.org/10.1007/s11738-020-03106-z


Locato V, Cimini S, Gara LD (2013) Strategies to increase vitamin C in plants: from plant defense perspective to food biofortification. Front Plant Sci 4:152. https://doi.org/10.3389/fpls.2013.00152


Malik S, Ashraf M, Arshad M, Malik TA (2015) Effect of ascorbic acid application on physiology of wheat under drought stress. Pak J Agric Sci 52:209–217





Moreno-Pizani MA, Paredes-Trejo FJ, Farias-Ramirez AJ et al (2020) Essential oil content of Baccharis Crispa Spreng. Regulated by water stress and Seasonal Variation. Agric Eng 2:458–470. https://doi.org/10.3390/agriengineering2030031


Muthoni J, Kabira JN (2016) Potato production under Drought conditions: identification of adaptive traits. Int J Hortic 6:1–10. https://doi.org/10.5376/ijh.2016.06.0012


Nasir MW, Toth Z (2022) Effect of Drought stress on Potato production: a review. Agronomy 12:635. https://doi.org/10.3390/agronomy12030635


Nasiri Y, Zandi H, Morshedloo MR (2018) Effect of salicylic acid and ascorbic acid on essential oil content and composition of dragonhead (Dracocephalum moldavica L.) under organic farming. J Essent Oil-Bear Plants 21:362–373


Naz S, Mushtaq A, Ali S et al (2022) Foliar application of ascorbic acid enhances growth and yield of lettuce (Lactuca sativa) under saline conditions by improving antioxidant defence mechanism. Funct Plant Biol. https://doi.org/10.1071/FP22139


Ozturk M, Turkyilmaz Unal B, García-Caparrós P, Khursheed A, Gul A, Hasanuzzaman M (2021) Osmoregulation and its actions during the drought stress in plants. Physiol Plant 172:1321–1335. https://doi.org/10.1111/ppl.13297


Paul JHA, Seaforth CE, Tikasingh T (2011) Eryngium foetidum L.: a review. Fitoterapia 82:302–308. https://doi.org/10.1016/j.fitote.2010.11.010


Raza A, Razzaq A, Mehmood SS et al (2019) Impact of climate change on crops adaptation and strategies to tackle its outcome. Rev Plants 8:34. https://doi.org/10.3390/plants8020034


Ren T, Weraduwage SM, Sharkey TD (2019) Prospects for enhancing leaf photosynthetic capacity by manipulating mesophyll cell morphology. J Exp Bot 70:1153–1165. https://doi.org/10.1093/jxb/ery448


Rodrigues TLM, Castro GLS, Viana RG et al (2021) Physiological performance and chemical compositions of the Eryngium foetidum L. (Apiaceae) essential oil cultivated with different fertilizer sources. Nat Prod Res 35:5544–5548. https://doi.org/10.1080/14786419.2020.1795653


Rustioni L, Bianchi D (2021) Drought increases chlorophyll content in stems of Vitis interspecific hybrids. Theor Exp Plant Physiol 33:69–78. https://doi.org/10.1007/s40626-021-00195-0


Said-Al Ahl HAH, El Gendy AG, Omer EA (2014) Effect of ascorbic acid, salicylic acid on coriander productivity and essential oil cultivated in two different locations. Adv Environ Biol 8:2236–2250


Santos SK, Gomes DS, Oliveira AFP et al (2023) Water stress and exogenous carnitine on growth and essential oil profile of Eryngium foetidum L. 3 Biotech 13:328. https://doi.org/10.1007/s13205-023-03757-y


Santos SK, Gomes DS, Santos LWO et al (2022) Exogenous carnitine mitigates the deleterious effects of mild-water stress on Arugula by modulating morphophysiological responses. J Plant Growth Regul 42:4073–4082. https://doi.org/10.1007/s00344-022-10868-y


Seleiman MF, Al-Suhaibani N, Ali N et al (2021) Drought stress impacts on plants and different approaches to alleviate its adverse effects. Plants 10:259. https://doi.org/10.3390/plants10020259


Sharma DK, Andersen SB, Ottosen CO, Rosenqvist E (2015) Wheat cultivars selected for high Fv/Fm under heat stress maintain high photosynthesis, total chlorophyll, stomatal conductance, transpiration and dry matter. Physiol Plant 153:284–298. https://doi.org/10.1111/ppl.12245


Singh S, Singh DR, Banu S, Salim KM (2013) Determination of Bioactives and antioxidant activity in Eryngium foetidum L.: A Traditional Culinary and Medicinal Herb. Proc Natl Acad Sci India Sect B Biol Sci 83:453–460. https://doi.org/10.1007/s40011-012-0141-y


Thomas PS, Essien EE, Ntuk SJ, Choudhary MI (2017) Eryngium foetidum L. essential oils: Chemical composition and antioxidant capacity. Medicines 4:24. https://doi.org/10.3390/medicines4020024


Way DA, Katul GG, Manzoni S, Vico G (2014) Increasing water use efficiency along the C3 to C4 evolutionary pathway: a stomatal optimization perspective. J Exp Bot 65:3683–3693. https://doi.org/10.1093/jxb/eru205


Young AJ, Lowe GL (2018) Carotenoids-antioxidant properties. Antioxidants 7:28. https://doi.org/10.3390/antiox7020028

 


Acknowledgements


We thank A. M. Santos and S. M. Santos for kindly donating seeds for the experiments. We also acknowledge the National Council for Scientific and Technological Development (CNPq—Brazil), Research Support Foundation of the State of Paraíba/ Federal University of Paraíba (FAPESQ/UFPB), Minas Gerais State Research Foundation (FAPEMIG), and Coordination for the Improvement of Higher Education Personnel (CAPES) for the scholarships granted to students.


Author Information


dos Santos Sabrina Kelly
Programa de Pós-graduação em Agronomia, Universidade Federal da Paraíba, Areia, Brasil
sabrinasks11@gmail.com
da Silva Gomes Daniel
Programa de Pós-graduação em Agronomia, Universidade Federal da Paraíba, Areia, Brasil
danielsgea@gmail.com

de Azevedo Soares Vanessa
Departamento de Agricultura, Universidade Federal da Paraíba, Bananeiras, Brasil

nessieazevedo@gmail.com
Dantas Estephanni Fernanda Oliveira
Departamento de Agricultura, Universidade Federal da Paraíba, Bananeiras, Brasil

estephanni.dantas@academico.uf
de Oliveira Ana Flávia Pellegrini
Departamento de Química, Núcleo Multifuncional de Pesquisas Químicas (NUPEQ), Universidade Federal de Juiz de Fora, Minas Gerais, Juiz de Fora, Brasil
ana.flavia.p.o@hotmail.com
Gusmão Moises Henrique Almeida
Departamento de Biologia, Instituto de Ciências Biológicas, Universidade Federal de Juiz de Fora, Juiz de Fora, Brasil
gusmaomoises@hotmail.com
de Matos Elyabe Monteiro
Departamento de Biologia, Instituto de Ciências Biológicas, Universidade Federal de Juiz de Fora, Juiz de Fora, Brasil
elyagro@gmail.com
,
Viccini Lyderson Facio
Departamento de Biologia, Instituto de Ciências Biológicas, Universidade Federal de Juiz de Fora, Juiz de Fora, Brasil
lyderson.viccini@ufjf.br
de Matos Elyabe Monteiro
Departamento de Biologia, Instituto de Ciências Biológicas, Universidade Federal de Juiz de Fora, Juiz de Fora, Brasil
elyagro@gmail.com
de Matos Elyabe Monteiro
Departamento de Biologia, Instituto de Ciências Biológicas, Universidade Federal de Juiz de Fora, Juiz de Fora, Brasil