Characterization of bioactive compounds from Plagiochasma appendiculatum (liverwort) and Plagiomnium cuspidatum (moss) collected from Uttarakhand (India)

*Article not assigned to an issue yet

, , ,


Research Articles | Published:

E-ISSN: 2229-4473.
Website: www.vegetosindia.org
Pub Email: contact@vegetosindia.org
DOI: 10.1007/s42535-025-01250-w
First Page: 0
Last Page: 0
Views: 530

Keywords: Bryophytes, Characterization, Methanolic extracts, n Plagiochasma appendiculatumn , n Plagiomnium cuspidatumn , Secondary Metabolites


Abstract


This study provides a comprehensive analysis of bioactive compounds in two bryophyte species, Plagiochasma appendiculatum and Plagiomnium cuspidatum. The plant specimens were meticulously collected from Artola, Uttarakhand, India, and subjected to a detailed phytochemical investigation. Compound extraction was performed using the Soxhlet extraction method, followed by thorough chemical analysis utilizing advanced chromatographic techniques. Thin-Layer Chromatography (TLC) and High-Performance Liquid Chromatography (HPLC) were employed to isolate and identify secondary metabolites. The chromatographic analyses revealed the presence of significant quantities of flavonoids, phenols, and terpenoids in the methanolic extracts, suggesting their potential as bioactive components. To further elucidate the chemical structures of these compounds, sophisticated analytical techniques, including Fourier Transform Infrared (FT-IR) Spectroscopy and Nuclear Magnetic Resonance (NMR), were utilized. FT-IR provided insights into the functional groups present, while NMR confirmed the presence of key bioactive substances such as caffeic acid, quercetin, and benzoic acid. These phenolic compounds are noted for their diverse biological activities, including antioxidant, antimicrobial, and antifungal properties. Their potential applications in medicine and sustainable agriculture underscore their value as natural remedies and contribute to the development of eco-friendly agricultural practices. This research significantly advances our understanding of the chemical composition and potential bioactive properties of Plagiochasma appendiculatum and Plagiomnium cuspidatum, highlighting their significance in both scientific and practical contexts.

Bryophytes, Characterization, Methanolic extracts, n                     Plagiochasma appendiculatumn                  , n                     Plagiomnium cuspidatumn                  , Secondary Metabolites


References


Aghababaei F, Hadidi M (2023) Recent advances in potential health benefits of quercetin. Pharmaceuticals 16(7):1020. https://doi.org/10.3390/ph16071020


Ahmedova A, Paradowska K, Wawer I (2012) 1H, 13C MAS NMR and DFT GIAO study of quercetin and its complex with Al (III) in solid state. J Inorg Biochem 110:27–35. https://doi.org/10.1016/j.jinorgbio.2012.02.007


Anhut S, Seeger T, Zinsmeister HD, Geiger H (1989) New Dihydrobiflavones from the Moss Plagiomnium cuspidatum. Zeitschrift Für Naturforschung C 44(3–4):189–192. https://doi.org/10.1515/znc-1989-3-403


Anhut S, Biehl J, Seeger T, Mues R, Zinsmeister D (1992) Flavone-C-Glycosides from the mosses Plagiomnium elatum and Plagiomnium cuspidatum Zeitschrift Für Naturforschung c. J Biosci 47(9–10):654–660. https://doi.org/10.1515/znc-1992-9-1002


Asakawa Y, Takikawa K, Toyota M, Takemoto T (1982) Novel bibenzyl derivatives and ent-cuparene-type sesquiterpenoids from Radula species. Phytochemistry 21(10):2481–2490


Asakawa Y, Ludwiczuk A, Novakovic M, Bukvicki D, Anchang KY (2021) Bis-bibenzyls, Bibenzyls, and Terpenoids in 33 genera of the Marchantiophyta (Liverworts): structures, synthesis, and bioactivity. J Nat Prod 85(3):729–762. https://doi.org/10.1021/acs.jnatprod.1c00302


Boonsongrit Y, Mueller B, Mitrevej A (2008) Characterization of drug-chitosan interaction by 1H NMR, FT-IR and isothermal titration calorimetry. Eur J Pharm Biopharm 69(1):388–395. https://doi.org/10.1016/j.ejpb.2007.11.008


Budak N, Aykın E, Seydim A, Greene A, Güzel-Seydim Z (2014) Functional properties of vinegar. J Food Sci. https://doi.org/10.1111/1750-3841.12434


Cai Y, Chen T, Cao J (2022) Antimicrobial and antioxidant metabolites from the cultured suspension cells of Marchantia polymorpha L. Natural Product Commun. https://doi.org/10.1177/1934578x221096172


Chahardoli A, Hajmomeni P, Ghowsi M, Qalekhani F, Shokoohinia Y, Fattahi A (2021) Optimization of quercetin-assisted silver nanoparticles synthesis and evaluation of their hemocompatibility, antioxidant, anti-inflammatory, and antibacterial effects. Global Chall. https://doi.org/10.1002/gch2.202100075


Chiang M, Tsai T, Wang C (2023) The potential benefits of quercetin for brain health: a review of anti-inflammatory and neuroprotective mechanisms. Int J Mol Sci 24(7):6328. https://doi.org/10.3390/ijms24076328


Coelho C, Ribeiro M, Cruz ACS, Domingues MRM, Coimbra MA, Bunzel M, Nunes FM (2014) Nature of phenolic compounds in coffee melanoidins. J Agric Food Chem 62(31):7843–7853. https://doi.org/10.1021/jf501510d


Coxson DS, McIntyre DD, Vogel HJ (1992) Pulse release of sugars and polyols from canopy bryophytes in tropical montane rain forest (Guadeloupe, French West Indies). Biotropica 24(2):121. https://doi.org/10.2307/2388665


Elmowafy E, El-Derany M, Biondo F, Tiboni M, Casettari L, Soliman M (2020) Quercetin loaded monolaurate sugar esters-based niosomes: sustained release and mutual antioxidant-hepatoprotective interplay. Pharmaceutics 12(2):143. https://doi.org/10.3390/pharmaceutics12020143


Ezati P, Rhim J (2021) Fabrication of quercetin-loaded biopolymer films as functional packaging materials. Acs Appl Polym Mater 3(4):2131–2137. https://doi.org/10.1021/acsapm.1c00177


Feed E (2015) Scientific opinion on the safety and efficacy of VevoVitall ® (benzoic acid) as a feed additive for pigs for reproduction (gestating and lactating sows, boars and gilts). Efsa J. https://doi.org/10.2903/j.efsa.2015.4157


Gangulee H (1977) Mosses of Eastern India and Adjacent Regions: A Monograph. Fac, Calcutta, p 6


Gokbulut A, Satilmis B, Batcioglu K, Cetin B, Sarer E (2012) Antioxidant activity and luteolin content of Marchantia polymorpha L. Turk J Biol 36(4):381–385. https://doi.org/10.3906/biy-1106-15


Guggenbuhl P, Séon A, Quintana A, Nunes C (2007) Effects of dietary supplementation with benzoic acid (VevoVitall®) on the zootechnical performance, the gastrointestinal microflora and the ileal digestibility of the young pig. Livest Sci 108(1–3):218–221. https://doi.org/10.1016/j.livsci.2007.01.068


Jockovic N, Andrade PB, Valentao P, Sabovljevic M (2008) HPLC-DAD of Phenolics in Bryophytes Lunularia cruciata, Brachytheciastrum velutinum and Kindbergia praelonga. J Serb Chem Soc 73(12):1161–1167. https://doi.org/10.2298/jsc0812161j


Karabacak M, Cinar Z, Kurt M, Sudha S, Sundaraganesan N (2012) FT-IR, FT-Raman, NMR and UV-vis spectra, vibrational assignments and DFT calculations of 4-butyl benzoic acid. Spectrochim Acta Part A Mol Biomol Spectrosc 85(1):179–189. https://doi.org/10.1016/j.saa.2011.09.058


Kashyap SR (1932) Liverworts of the Western Himalayas and the Panjab Plain II. The University of the Panjab, Lahore


Kirkova D, Stremski Y, Abeghe SS, Docheva M (2022) Quercetin hybrids-synthesis, spectral characterization and radical scavenging potential. Molbank 2022(1):13–29. https://doi.org/10.3390/m1329


Kluge H, Brož J, Eder K (2006) Effect of benzoic acid on growth performance, nutrient digestibility, nitrogen balance, gastrointestinal microflora and parameters of microbial metabolism in piglets. J Anim Physiol Anim Nutr 90(7–8):316–324. https://doi.org/10.1111/j.1439-0396.2005.00604.x


Lallemand JY, Duteil M (1977) . 13C N.N.R. spectra of quercetin and rutin. Org Magn Reson 9(3):179–180. https://doi.org/10.1002/mrc.1270090317


Liu J, Wang X, Bai R, Zhang N, Kan J, Jin C (2017) Synthesis, characterization, and antioxidant activity of caffeic-acid-grafted corn starch. Starch 70(1–2):1700141. https://doi.org/10.1002/star.201700141


Maksimova V, Klavina L, Bikovens O, Zicmanis A, Purmalis O (2013) Structural characterization and chemical classification of some bryophytes found in latvia. Chem Biodivers 10(7):1284–1294. https://doi.org/10.1002/cbdv.201300014


Maurya P (2022) Health benefits of quercetin in age-related diseases. Molecules 27(8):2498. https://doi.org/10.3390/molecules27082498


Mihailovic V, Katanic J, Misic D, Stankovic V, Mihailovic M, Uskokovic A, Arambasic J, Solujic S, Mladenovic M, Stankovic N (2014) Hepatoprotective effects of secoirid-rich extracts from Gentiana cruciata L against carbon tetrachloride induced liver damage in rats. Food Funct 5(8):1795–1803. https://doi.org/10.1039/c4fo00088a


Mooney E, Holden S, Xia X, Li Y, Jiang M, Banson C, Sahingur S (2021) Quercetin preserves oral cavity health by mitigating inflammation and microbial dysbiosis. Front Immunol. https://doi.org/10.3389/fimmu.2021.774273


Motti R, Palma A, Falco B (2023) Bryophytes used in folk medicine: an ethnobotanical overview. Horticulturae 9(2):137. https://doi.org/10.3390/horticulturae9020137


Novakovic M, Bukvicki D, Andjelkovic B, Ilic Tomic T, Veljic M, Tesevic V, Asakawa Y (2019) Cytotoxic Activity of Riccardin and Perrottetin Derivatives from the Liverwort Lunularia cruciata. J Nat Prod 82(4):694–701. https://doi.org/10.1021/acs.jnatprod.8b00390


Oh H, Choi Y, Jin Y, Cho J (2012) Effect of dietary benzoic acid on beneficial microflora and immune response in the intestine of weaning pigs. J Life Sci 22(10):1307–1315. https://doi.org/10.5352/jls.2012.22.10.1307


Peters K, Treutler H, Döll S, Kindt A, Hankemeier T, Neumann S (2019) Chemical diversity and classification of secondary metabolites in nine bryophyte species. Metabolites 9(10):222. https://doi.org/10.3390/metabo9100222


Rich G, Buchweitz M, Winterbone M, Kroon P, Wilde P (2017) Towards an understanding of the low bioavailability of quercetin: a study of its interaction with intestinal lipids. Nutrients 9(2):111. https://doi.org/10.3390/nu9020111


Sabovljevic A, Sabovljevic M, Jockovic N (2009) In vitro culture and secondary metabolite isolation in bryophytes. Methods in Mol Biol 547:117–128. https://doi.org/10.1007/978-1-60327-287-2_10


Sabovljevic MS, Sabovljevic AD, Ikram NKK, Peramuna A, Bae H, Simonsen HT (2016) Bryophytes - an emerging source for herbal remedies and chemical production. Plant Genet Res 14(4):314–327. https://doi.org/10.1017/s1479262116000320


Sadowska AM, Sitarek P, Kucharska E, Kowalczyk T, Zajdel K, Ceglinski T, Zajdel R (2021) Antioxidant properties of plant-derived phenolic compounds and their effect on skin fibroblast cells. Antioxidants 10(5):726. https://doi.org/10.3390/antiox10050726


Shabana Y, Abdel-Fattah G, Ismail A, Rashad Y (2008) Control of brown spot pathogen of rice (Bipolaris oryzae) using some phenolic antioxidants. Braz J Microbiol 39(3):438–444. https://doi.org/10.1590/s1517-83822008000300006


Shabir I, Pandey V, Shams R, Dar A, Dash K, Khan S, Pandiselvam R (2022) Promising bioactive properties of quercetin for potential food applications and health benefits: a review. Front Nutr. https://doi.org/10.3389/fnut.2022.999752


Siegel U, Zinsmeister HD, Stein W (1989) A rapid HPLC-fingerprint system for flavonoids of bryophytes. J Hattori Bot Lab 67:389–394


Singh SK, Singh DK (2007) Some new and noteworthy records of Hepaticae and Anthocerotae from Western Himalaya, India. Cryptogam Bryol 28(3):253


Smith AJE (1978) The Moss Flora of Britain and Ireland. Cambridge University Press, Cambridge, UK


Starsinic M, Taylor RL, Walker PL, Painter PC (1983) FT-IR studies of Saran chars. Carbon 21(1):69–74. https://doi.org/10.1016/0008-6223(83)90158-6


Torrallardona D, Badiola I, Broz J (2007) Effects of benzoic acid on performance and ecology of gastrointestinal microbiota in weanling piglets. Livest Sci 108(1–3):210–213. https://doi.org/10.1016/j.livsci.2007.01.062


Tosovic J (2017) Spectroscopic features of caffeic acid: theoretical study. Kragujevac J Sci 39:99–108. https://doi.org/10.5937/kgjsci1739099t


Uyanga V, Amevor F, Liu M, Cui Z, Zhao X (2021) Potential implications of citrulline and quercetin on gut functioning of monogastric animals and humans: a comprehensive review. Nutrients 13(11):3782. https://doi.org/10.3390/nu13113782


Valeeva LR, Dague AL, Hall MH, Tikhonova AE, Sharipova MR, Valentovic MA, Bogomolnaya LM, Shakirov EV (2022) Antimicrobial activities of secondary metabolites from model mosses. Antibiotics (Basel, Switzerland) 11(8):1004. https://doi.org/10.3390/antibiotics11081004


Vollar M, Gyovai A, Szűcs P, Zupkó I, Marschall M, Csupor-Löffler B, Csupor D (2018) Antiproliferative and antimicrobial activities of selected bryophytes. Molecules 23(7):1520. https://doi.org/10.3390/molecules23071520


Wang X, Cao J, Wu Y, Wang Q, Xiao J (2016) Flavonoids, antioxidant potential, and acetylcholinesterase inhibition activity of the extracts from the gametophyte and Archegoniophore of Marchantia polymorpha L. Molecules 21(3):360. https://doi.org/10.3390/molecules21030360


Xiang W, Wei X, Tang H, Li L, Huang R (2020) Complete genome sequence and biodegradation characteristics of benzoic acid-degrading bacterium Pseudomonas sp. scb32. Biomed Res Int. https://doi.org/10.1155/2020/6146104


Xie CF, Lou HX (2009) Secondary metabolites in bryophytes: an ecological aspect. Chem Biodivers 6(3):303–312. https://doi.org/10.1002/cbdv.200700450


Yang N, Hu W, He J, Wu X, Zou T, Zheng J, Wang M (2023) Ultra-high performance liquid chromatography-quadrupole/time-of-flight mass spectrometry-based lipidomics reveals key lipid molecules as potential therapeutic targets of polygonum cuspidatum against hyperlipidemia in a hamster model. J Sep Sci. https://doi.org/10.1002/jssc.202200844


Zarad S, Nimkar N, Desai K, Solanki M, Gandhi D, Gandhi H, Suraliwala M (2017) Analytical validation and comparative study of HPLC, spectrophotometric and titration method for determination of benzoic acid in food products. Asian J Chem 29(7):1565–1568. https://doi.org/10.14233/ajchem.2017.20576


Zhou Y, Wen X, Ni R, Cheng A, Lou H (2022) Tissue culture of Plagiochasma appendiculatum and the effect of callus differentiation on types and content of bisbibenzyls. Nat Prod Commun. https://doi.org/10.1177/1934578x221106243


Chopra, R. S. (1975). Taxonomy of Indian Mosses. New Delhi: CSIR.


Dabhade, G. T. (1998). Mosses of Khandala & Mahabaleshwar in the Western Ghats (India). A. S. Dalvi.


Pervez, M. R., Musaddiq, M., Thakare, P. V., & Kumar, A. (2015). Characterization of Bioactive compound isolated from Myrothecium spp. with UV, FT-IR and HPLC Analysis. Indian Journal of Pharmaceutical and Biological Research3(01), 01–05. https://doi.org/10.30750/ijpbr.3.1.1.


Purnama, R. C., & Primadiamanti, A. (2021). Phytochemical screening and spectrum profile of functional group from Banana (Musa paradisiaca L.) stem waste extract using Fourier-transform Infrared (FT-IR) Spectroscopy method. Journal of Physics: Conference Series1882(1), 012106. https://doi.org/10.1088/1742-6596/1882/1/012106.


Quintao, G. C., Cavalcante, G. M., & Lins, L. A. (2022). Investigation of wound healing in vitro of specie Brachymenium exile (Dozy & Molk.) Bosch & Sande Lac. Research, Society and Development11(4):e6311427057-e6311427057.


Susilo, S., & Suciati, R. (2018). Studies of morphological and secondary metabolites variety of mosses (Bryophyta) in Cibodas, West Java.








Dhivya K, Kalaichelvi K (2017) Screening of phytoconstituents, UV-VIS Spectrum and FTIR analysis of Micrococca mercurialis (L.) Benth. Int J Herb Med 5(6):40–44

 


Author Information


Department of Environmental Science, ITM University, Gwalior, India