Citrus as a source of antimalarial agents: current research trends and future directions

, , ,


Review Articles | Published:

DOI: 10.1007/s42535-024-01118-5
First Page: 21
Last Page: 31
Views: 1767

Keywords: Antimalarial, Bioactive compounds, Citrus, Malarial treatment, Plasmodium


Abstract


Malaria is a parasite disease that can be fatal and is most common in tropical and subtropical areas of the world. Five species of Plasmodium, including Plasmodium falciparum and Plasmodium vivax, are responsible for most cases of disease. The two most recommended medications for treating malaria are artemisinin and chloroquine. However, several artemisinin and chloroquine-resistant plasmodium strains have lately been found as a result of the regular use of these medications. It is crucial to find an alternative, safe source of malaria treatment. Plants are known to contain a wide range of bioactive compounds, including alkaloids, coumarins, flavonoids, and terpenes. These bioactive substances target several plasmodium cellular and metabolic pathways. For example, flavonoids target plasmodium s fatty acid synthesis, terpenes block plasmodial DNA replication, whereas coumarins an successfully block DNA gyrase. Citrus (Rutaceae) is one of the common plant sources that has a high concentration of the previously listed plant secondary metabolites. The existence of these bioactive compounds has previously established the significance of citrus in pharmacology and medicine. Nevertheless, no review has yet been done on the mechanism via which portions of citrus plants can be used to treat malaria. This review aims to explore and summarize the mechanism by which citrus plants can be utilized for malarial treatment.

Antimalarial, Bioactive compounds, Citrus, Malarial treatment, Plasmodium


References


Adamu A, Okhale S, Egharevba H, Ugbabe G (2019) Comparative studies of essential oil of fruit peels of four citrus species (family: Rutaceae) in Nigeria Comparative studies of essential oil of fruit peels of four citrus species (family: Rutaceae) in Nigeria. Int J Chem Stud 7(July 2020):2742–2747. Available from: https://www.researchgate.net/publication/343291241_Comparative_studies_of_essential_oil_of_fruit_peels_of_four_citrus_species_family_Rutaceae_in_Nigeria


Adhikari K, Sarma R, Rabha B, Khanikor B (2022) Repellent activity of citrus essential oils and two constituent compounds against Aedes aegypti. Proc Natl Acad Sci India Sect b: Biol Sci 92(3):621–628. https://doi.org/10.1007/s40011-022-01347-1


Ahmed S, Rattanpal H, Gul K, Dar R, Sharma A (2019) Chemical composition, antioxidant activity and GC-MS analysis of juice and peel oil of grapefruit varieties cultivated in India. J Integr Agric 18:1634–1642. https://doi.org/10.1016/S2095-3119(19)62602-X


Aïzoun N, Koura K, Adjatin A (2021) Effect of aqueous extract of lemon (Citrus limon) on Anopheles gambiae sensu lato (Diptera: Culicidae) larvae tolerance in malaria vector control in Dogbo district in south-western Republic of Benin, West Africa. GSC Biol Pharm Sci 17:1–7. https://doi.org/10.30574/gscbps.2021.17.2.0292


Amoa Onguéné P, Ntie-Kang F, Lifongo LL, Ndom JC, Sippl W, Mbaze LM (2013) The potential of anti-malarial compounds derived from African medicinal plants, part I: a pharmacological evaluation of alkaloids and terpenoids. Malar J 12:449. https://doi.org/10.1186/1475-2875-12-449


Balaich JN, Mathias DK, Torto B, Jackson BT, Tao D, Ebrahimi B, Tarimo BB, Cheseto X, Foster WA, Dinglasan RR (2016) The nonartemisinin sesquiterpene lactones parthenin and parthenolide block Plasmodium falciparum sexual stage transmission. Antimicrob Agents Chemother 60(4):2108–2117. https://doi.org/10.1128/AAC.02002-15


Bapna S, Satvekar T, Jadhav P, Sawant MG (2017) Evaluation of in vitro antimalarial activity of calotropis gigantia and citrus aurintofolia flower extract against Plasmodium falciparum 3D7. Saroj Et Al. World J Pharm Res 6(16):1619–1626. https://doi.org/10.20959/wjpr201716-10347


Bayala B, Bassole IH, Scifo R, Gnoula C, Morel L, Lobaccaro J-MA, Simpore J (2014) Anticancer activity of essential oils and their chemical components - a review. Am J Cancer Res 4(6):591–607


Bhowa R, Roy P, Baisya T, Singh RR (2024) Citrus and its bioactive compounds: a possible alternative source for antimalarial drugs. In: Futuristic trends in agriculture engineering & food sciences, vol 3. Book 10, IIP Series, pp 137–150. https://doi.org/10.58532/V3BCAG10P4CH1. e-ISBN: 978-93-5747-595-2


Bray PG, Martin RE, Tilley L, Ward SA, Kirk K, Fidock DA (2005) Defining the role of PfCRT in Plasmodium falciparum chloroquine resistance. Mol Microbiol 56(2):323–333. https://doi.org/10.1111/j.1365-2958.2005.04556.x


Chen Q, Wang D, Tan C, Hu Y, Sundararajan B, Zhou Z (2020) Profiling of flavonoid and antioxidant activity of fruit tissues from 27 Chinese local citrus cultivars. Plants 9(2):1–19. https://doi.org/10.3390/plants9020196


Chinwuba P, Akah P, Ilodigwe E (2015) Invivo antiplasmodial activity of the ethanol stem extract and fractions of Citrus sinensis in mice. Merit Res J 3(4):140–146. Available from: https://www.researchgate.net/publication/275651755_Invivo_antiplasmodial_activity_of_the_ethanol_stem_extract_and_fractions_of_Citrus_sinensis_in_mice


Dey P, Kundu A, Kumar A, Gupta M, Lee BM, Bhakta T, Dash S, Kim HS (2020) Analysis of alkaloids (indole alkaloids, isoquinoline alkaloids, tropane alkaloids). Recent advances in natural products analysis. Elsevier Inc, Amsterdam. https://doi.org/10.1016/B978-0-12-816455-6.00015-9


Dias MC, Pinto DCGA, Silva AMS (2021) Plant flavonoids: chemical characteristics and biological activity. Molecules. https://doi.org/10.3390/molecules26175377


Dong Y, Simões ML, Marois E, Dimopoulos G (2018) CRISPR/Cas9 -mediated gene knockout of Anopheles gambiae FREP1 suppresses malaria parasite infection. PLoS Pathog 14(3):1–16. https://doi.org/10.1371/journal.ppat.1006898


Dugo P, Presti ML, Ohman M, Fazio A, Dugo G, Mondello L (2005) Determination of flavonoids in citrus juices by micro-HPLC-ESI/MS. J Sep Sci 28(11):1149–1156. https://doi.org/10.1002/jssc.200500053


Dugrand-Judek A, Olry A, Hehn A, Costantino G, Ollitrault P, Froelicher Y, Bourgaud F (2015) The distribution of coumarins and furanocoumarins in Citrus species closely matches Citrus phylogeny and reflects the organization of biosynthetic pathways. PLoS ONE 10(11):1–25. https://doi.org/10.1371/journal.pone.0142757


Eastman RT, Fidock DA (2009) Artemisinin-based combination therapies: a vital tool in efforts to eliminate malaria. Nat Rev Microbiol 7(12):864–874. https://doi.org/10.1038/nrmicro2239


Elom MO, Uche AG, Ukwah BN, Usanga VU, Okpara-Elom AI, Kalu ME, Ibe OE (2021) Anti-plasmodial effect of C. limon and C. paradisi extracts on Plasmodium berghei-infected mice. World J Biol Pharm Health Sci 8(2):26–33. https://doi.org/10.30574/wjbphs.2021.8.2.0118


Ettebong EO, Nwafor PA, Okokon JE (2012) In vivo antiplasmodial activities of ethanolic extract and fractions of Eleucine indica. Asian Pac J Trop Med 5(9):673–676. https://doi.org/10.1016/S1995-7645(12)60105-9


Ettebong E, Ubulom P, Etuk A (2019) Antiplasmodial activity of methanol leaf extract of Citrus aurantifolia (Christm) Swingle. J Herbmed Pharmacol 8(4):274–280. https://doi.org/10.15171/jhp.2019.40


Ezati M, Ghavamipour F, Khosravi N, Sajedi RH, Chalabi M, Farokhi A, Adibi H, Khodarahmi R (2022) Synthesis and potential antidiabetic properties of curcumin-based derivatives: an in vitro and in silico study of α-glucosidase and α-amylase inhibition. Med Chem (Shariqah (United Arab Emirates)) 19(1):99–117. https://doi.org/10.2174/1573406418666220509101854


Garcia AR, Amaral ACF, Azevedo MMB, Corte-Real S, Lopes RC, Alviano CS, Pinheiro AS, Vermelho AB, Rodrigues IA (2017) Cytotoxicity and Anti-Leishmania amazonensis activity of Citrus sinensis leaf extracts. Pharm Biol 55(1):1780–1786. https://doi.org/10.1080/13880209.2017.1325380


George U (2019) Environmental control of malaria: can Citrus sinensis peel be a potent larvicide for household vector control? GSC Biol Pharm Sci 9:85–90. https://doi.org/10.30574/gscbps.2019.9.3.0236


Gogoi N, Rudrapal M, Celik I, Kaishap PP, Chetia D (2023) In vitro and in silico guided identification of antimalarial phytoconstituent(s) in the root of Citrus maxima (Burm.) Merr. J Biomol Struct Dyn. https://doi.org/10.1080/07391102.2023.2283154


Goodarzi E, Beiranvand R, Darvishi I, Naghibzadeh-tahami A, Bechashk SM (2020) Geographical distribution of falciparum malaria in the world and its relationship with the human development index (HDI): countries based on the WHO report in 2017


Hidayati AR, Widyawaruyanti A, Ilmi H, Tanjung M, Widiandani T, Syafruddin D, Hafid AF (2020) Antimalarial activity of flavonoid compound isolated from leaves of artocarpus altilis. Pharmacogn J 12(4):835


Hott A, Tucker MS, Casandra D, Sparks K, Kyle DE (2015) Fitness of artemisinin-resistant Plasmodium falciparum in vitro. J Antimicrob Chemother 70(10):2787–2796. https://doi.org/10.1093/jac/dkv199


Ihekwereme CP, Onyegbule FA, Okeke NV, Obi CO (2017) Preliminary studies on the antimalarial properties of the peels of citrus maxima linn. Biosci 5(1):57–65


Javed S, Javaid A, Nawaz S, Saeed M, Mahmood Z, Siddiqui S et al (2014) Phytochemistry, GC-MS analysis, antioxidant and antimicrobial potential of essential oil from five citrus species. J Agric Sci 6(3). Available from: https://www.researchgate.net/publication/351663798_Phytochemistry_GC-MS_Analysis_Antioxidant_and_Antimicrobial_Potential_of_Essential_Oil_From_Fiv


Jha V, Risbud A, Kasbe S, Thube S, Preman G, Maiti S, Yadav H, Khan F, Shaikh F, Jain T (2022) GC–MS analysis and investigation of bioactive potential of essential oil from citrus aurantium var. amara. Int J Pharm Chem 8(3):24–34. https://doi.org/10.11648/j.ijpc.20220803.11


Jin H, Xu Z, Cui K, Zhang T, Lu W, Huang J (2014) Dietary flavonoids fisetin and myricetin: dual inhibitors of Plasmodium falciparum falcipain-2 and plasmepsin II. Fitoterapia 94:55–61. https://doi.org/10.1016/j.fitote.2014.01.017


Khameneh B, Eskin NAM, Iranshahy M, Fazly Bazzaz BS (2021) Phytochemicals: a promising weapon in the arsenal against antibiotic-resistant bacteria. Antibiotics (Basel, Switzerland). https://doi.org/10.3390/antibiotics10091044


Kokori E, Olatunji G, Akinboade A, Akinoso A, Egbunu E, Aremu SA, Okafor CE, Oluwole O, Aderinto N (2024) Triple artemisinin-based combination therapy (TACT): advancing malaria control and eradication efforts. Malar J 23(1):25. https://doi.org/10.1186/s12936-024-04844-y


Kristhien A, Blessing A, O OK, Nwanjo UH, Benson N (2019) Toxicological and antiplasmodial suppressive activities of ethanolic extracts of orange (Citrus sinensis) peels, grape (Citrus paradisi) and guava (Psidium guajava) leaves in Albino rats. Int J Eng Sci Invent 8(08):37–44. Available from: http://www.ijesi.org/papers/Vol(8)i8/Series-1/H0808013744.pdf


Kucharski DJ, Jaszczak MK, Boratyński PJ (2022) A review of modifications of Quinoline Antimalarials: Mefloquine and (hydroxy) Chloroquine. Molecules (Basel, Switzerland). https://doi.org/10.3390/molecules27031003


Laaraj N, Bouhrim M, Kharchoufa L, Tiji S, Bendaha H, Addi M, Drouet S, Hano C, Lorenzo JM, Bnouham M, Mimouni M (2022) Phytochemical analysis, α-glucosidase and α-amylase inhibitory activities and acute toxicity studies of extracts from pomegranate (Punica granatum) bark, a valuable agro-industrial by-product. Foods (Basel, Switzerland). https://doi.org/10.3390/foods11091353


Lawal IO, Olagoke TH (2016) A review on Anti-malarial activities of selected plant species from the rutaceae family. J Pharmacogn Phytochem 4(4). Available from: https://www.rroij.com/open-access/a-review-on-antimalarial-activities-of-selected-plant-species-from-therutaceae-family-.php?aid=80741


Li K, Xia Y, Li F, Fan Y, Liu T-X (2020) Comparative analysis of volatile compounds in five citrus cultivars with HS-SPME-GC-MS. Pak J Agric Sci 57:1203–1209. https://doi.org/10.21162/PAKJAS/20.9895


Lutz M, Fuentes E, Ávila F, Alarcón M, Palomo I (2019) Roles of phenolic compounds in the reduction of risk factors of cardiovascular diseases. Molecules 24(2):1–15. https://doi.org/10.3390/molecules24020366


Mahato N, Sharma K, Koteswararao R, Sinha M, Baral E, Cho MH (2019) Citrus essential oils: extraction, authentication and application in food preservation. Crit Rev Food Sci Nutr 59(4):611–625. https://doi.org/10.1080/10408398.2017.1384716


Maia MF, Moore SJ (2011) Plant-based insect repellents: a review of their efficacy, development and testing. Malar J 10(1):S11. https://doi.org/10.1186/1475-2875-10-S1-S11


Mao W-W, Zhao Z-C, Li G-H, Guo W-L, Ding Z-H, Wang S-F, Sun Y, Cao Z-J, Li J-L, Zhou Y-C (2022) In vitro screening and in vivo evaluation of antiparasitic phytochemicals against Cryptocaryon irritans in pompano, Trachinotus ovatus. J World Aquac Soc 53(6):1084–1100. https://doi.org/10.1111/jwas.12927


Marliana E, Hairani R, Tjahjandarie TS, Tanjung M (2018) Antiplasmodial activity of flavonoids from Macaranga tanarius leaves. IOP Conf Ser: Earth Environ Sci. https://doi.org/10.1088/1755-1315/144/1/012011


Martino E, Casamassima G, Castiglione S, Cellupica E, Pantalone S, Papagni F, Rui M, Siciliano AM, Collina S (2018) Vinca alkaloids and analogues as anti-cancer agents: looking back, peering ahead. Bioorg Med Chem Lett 28(17):2816–2826. https://doi.org/10.1016/j.bmcl.2018.06.044


Mbaba M, Dingle L, Zulu A, Laming D, Swart T, Mare J-A, Hoppe H, Edkins A, Khanye D (2021) Coumarin-annulated ferrocenyl 1,3-oxazine derivatives possessing in vitro antimalarial and antitrypanosomal potency. Molecules 26:1333. https://doi.org/10.3390/molecules26051333


Melariri P, Campbell W, Etusim P, Smith P (2012) In vitro antiplasmodial activities of extracts from five plants used singly and in combination against Plasmodium falciparum parasites. J Med Plants Res 6(47):5770–5779. https://doi.org/10.5897/JMPR11.1187


Mina P, Kumar Y, Verma A, Khan F, Tandon S, Pal A, Darokar M (2018) Silymarin, a polyphenolic flavonoid impede Plasmodium falciparum growth through interaction with heme. Nat Product Res. https://doi.org/10.1080/14786419.2018.1548449


Nakanishi M, Hino M, Yoshimura M, Amakura Y, Nomoto H (2019) Identification of sinensetin and nobiletin as major antitrypanosomal factors in a citrus cultivar. Exp Parasitol 200:24–29. https://doi.org/10.1016/j.exppara.2019.03.008


Nath P, Sharma R, Debnath S, Sharma M, Inbaraj B, Kumar Dikkala P, Nayak PK (2023) Recent trends in polysaccharide-based biodegradable polymers for smart food packaging industry. Int J Biol Macromol. https://doi.org/10.1016/j.ijbiomac.2023.127524


Odediran SA, Awosode KE, Adegoke TA, Ka Ilat AO, Bimbola BO, Andrew AO, Ifeoluwa MO, Kafayat TS, Jonathan UU, Abayomi JO, Stephen AA, Adeleke CA (2020) Combinations of Chrysophyllum albidum and Citrus aurantifolia as antimalarial agents and their effects on orthodox antimalarial drugs in mice. Ann Complement Altern Med 2(1):1–9


Ogunjinmi OE, Olawore NO (2017) Comparative studies of chemical constituents and antimalarial activity of essential oils extracted from the stem root and fruit peel of citrus paradisi grown in Nigeria. J Appl Chem 10(12):1–11. https://doi.org/10.9790/5736-1012010111


Oluba OM (2019) Ganoderma terpenoid extract exhibited anti-plasmodial activity by a mechanism involving reduction in erythrocyte and hepatic lipids in Plasmodium berghei infected mice. Lipids Health Dis 18(1):12. https://doi.org/10.1186/s12944-018-0951-x


Omagha R, Idowu ET, Alimba CG, Otubanjo OA, Oyibo WA, Agbaje EO (2022) In vivo antiplasmodial activities and acute toxicity assessment of two plant cocktail extracts commonly used among Southwestern Nigerians. J Parasitic Dis: off Organ Indian Soc Parasitol 46(2):343–353. https://doi.org/10.1007/s12639-021-01450-6


Ortiz S, Vásquez-Ocmín PG, Cojean S, Bouzidi C, Michel S, Figadère B, Grougnet R, Boutefnouchet S, Maciuk A (2020) Correlation study on methoxylation pattern of flavonoids and their heme-targeted antiplasmodial activity. Bioorg Chem. https://doi.org/10.1016/j.bioorg.2020.104243


Panche AN, Diwan AD, Chandra SR (2016) Flavonoids: an overview. J Nutr Sci. https://doi.org/10.1017/jns.2016.41


Pandey A, Shyamal SS, Shrivastava R, Ekka S, Mali SN (2022) Inhibition of Plasmodium falciparum fatty acid biosynthesis (FAS-II pathway) by natural flavonoids: a computer-aided drug designing approach. Chem Afr 5(5):1469–1491. https://doi.org/10.1007/s42250-022-00449-7


Pereira AG, Cassani L, Garcia-Oliveira P, Otero P, Mansoor S, Echave J, Xiao J, Simal-Gándara J, Prieto MA (2023) Plant alkaloids: production, extraction, and potential therapeutic properties BT. In: Carocho M, Heleno SA, Barros L (eds) Natural secondary metabolites: from nature, through science, to industry. Springer International Publishing, Cham, pp 157–200. https://doi.org/10.1007/978-3-031-18587-8_6


Preis J, Lutwick L (2014) Plasmodium knowlesi. In: Ram K (ed) Emerging infectious diseases: clinical case studies. Elsevier Inc, Amsterdam. https://doi.org/10.1016/B978-0-12-416975-3.00025-X


Rafiq S, Singh B, Gat Y (2019) Effect of different drying techniques on chemical composition, color and antioxidant properties of kinnow (Citrus reticulata) peel. J Food Sci Technol. https://doi.org/10.1007/s13197-019-03722-9


Ramírez-Pelayo C, Martínez-Quiñones J, Gil J, Durango D (2019) Coumarins from the peel of citrus grown in Colombia: composition, elicitation and antifungal activity. Heliyon 5(6):e01937. https://doi.org/10.1016/j.heliyon.2019.e01937


Rodrigues Goulart H, Kimura EA, Peres VJ, Couto AS, Aquino Duarte FA, Katzin AM (2004) Terpenes arrest parasite development and inhibit biosynthesis of isoprenoids in Plasmodium falciparum. Antimicrob Agents Chemother 48(7):2502–2509. https://doi.org/10.1128/AAC.48.7.2502-2509.2004


Roowi S, Crozier A (2011) Flavonoids in tropical Citrus species. J Agric Food Chem 59(22):12217–12225. https://doi.org/10.1021/jf203022f


Saini RK, Ranjit A, Sharma K, Prasad P, Shang X, Gowda KGM, Keum Y-S (2022) Bioactive compounds of citrus fruits: a review of composition and health benefits of carotenoids, flavonoids, limonoids, and terpenes. Antioxidants (Basel, Switzerland). https://doi.org/10.3390/antiox11020239


Sanei-Dehkordi A, Sedaghat MM, Vatandoost H, Abai MR (2016) Chemical compositions of the peel essential oil of Citrus aurantium and its natural larvicidal activity against the malaria vector Anopheles stephensi (Diptera: Culicidae) in comparison with Citrus paradisi. J Arthropod Borne Dis 10(4):577–585


Sato S (2021) Plasmodium—a brief introduction to the parasites causing human malaria and their basic biology. J Physiol Anthropol 40(1):1–13. https://doi.org/10.1186/s40101-021-00254-0


Segun PA, Ismail FMD, Ogbole OO, Nahar L, Evans AR, Ajaiyeoba EO, Sarker SD (2018) Acridone alkaloids from the stem bark of Citrus aurantium display selective cytotoxicity against breast, liver, lung and prostate human carcinoma cells. J Ethnopharmacol 227:131–138. https://doi.org/10.1016/j.jep.2018.08.039


Sharajabian MH, Sun W, Cheng Q (2020) Exploring Artemisia annua L., artemisinin and its derivatives, from traditional Chinese wonder medicinal science. Notulae Botanicae Horti Agrobotanici Cluj-Napoca 48(4):1719–1741. https://doi.org/10.15835/nbha48412002


Sharma S, Loach N, Gupta S, Mohan L (2022) Evaluation of larval toxicity, mode of action and chemical composition of citrus essential oils against Anopheles stephensi and Culex quinquefasciatus. Biocatal Agric Biotechnol 39:102284. https://doi.org/10.1016/j.bcab.2022.102284


Shija KM, Nondo RSO, Mloka D, Sangeda RZ, Bwire GM (2020) Effects of lemon decoction on malaria parasite clearance and selected hematological parameters in Plasmodium berghei ANKA infected mice. BMC Complement Med Therap 20(1):24. https://doi.org/10.1186/s12906-020-2820-1


Suchman E (2016) Polymerase Chain Reaction Protocol. Am Soc Microbiol (November 2011):1–14. Available from: https://asm.org/ASM/media/Protocol-Images/Polymerase-Chain-Reaction-Protocol.pdf?ext=.pdf


Syahri J, Yuanita E, Achromi B, Armunanto R, Bambang P (2017) Chalcone analogue as potent anti-malarial compounds against Plasmodium falciparum: synthesis, biological evaluation, and docking simulation study. Asian Pac J Trop Biomed. https://doi.org/10.1016/j.apjtb.2017.07.004


Tasdemir D, Lack G, Brun R, Rüedi P, Scapozza L, Perozzo R (2006) Inhibition of Plasmodium falciparum fatty acid biosynthesis: evaluation of FabG, FabZ, and FabI as drug targets for flavonoids. J Med Chem 49(11):3345–3353. https://doi.org/10.1021/jm0600545


Um Y, Ji H, Jun H, Kim K, Seok K, Boo J (2020) Wild simulated ginseng activates mouse macrophage, RAW264. 7 cells through TRL2/4-dependent activation of MAPK, NF- κ B and PI3K/AKT pathways. J Ethnopharmacol 263(June):113218. https://doi.org/10.1016/j.jep.2020.113218


Wang C, Wan J, Mei Z, Yang X (2014) Acridone alkaloids with cytotoxic and antimalarial activities from Zanthoxylum simullans Hance. Pharmacogn Mag 10(37):73–76. https://doi.org/10.4103/0973-1296.126669


World Health Organization (2020) World malaria report 2020: 20 years of global progress and challenges. World Health Organization, Geneva. Licence: CC BY-NC-SA 3.0 IGO [Internet], vol 73, pp 1–4. Available from: https://www.who.int/teams/global-malaria-programme/reports/world-malaria-report-2020


Zimbres FM, Valenciano AL, Merino EF, Florentin A, Holderman NR, He G, Gawarecka K, Skorupinska-Tudek K, Fernández-Murga ML, Swiezewska E, Wang X, Muralidharan V, Cassera MB (2020) Metabolomics profiling reveals new aspects of dolichol biosynthesis in Plasmodium falciparum. Sci Rep 10(1):1–17. https://doi.org/10.1038/s41598-020-70246-0


Zothantluanga J, Aswin K, Rudrapal M, Chetia DD (2022) Antimalarial Flavonoid-glycoside from acacia pennata with inhibitory potential against PfDHFR-TS: an in-silico study. Biointerface Res Appl Chem 12:4871–4887. https://doi.org/10.33263/BRIAC124.48714887

 


Author Information


Department of Herbal Science and Technology, ADP College, Nagaon, India