Estimation of genomic DNA content and its correlation with stomatal characteristics among some selected Canavalia species

*Article not assigned to an issue yet


Research Articles | Published:

E-ISSN: 2229-4473.
Website: www.vegetosindia.org
Pub Email: contact@vegetosindia.org
DOI: 10.1007/s42535-025-01431-7
First Page: 0
Last Page: 0
Views: 2

Keywords: n Canavalia spp., Underutilized legume, Flow cytometry, Stomatal number, Genome size


Abstract


The genus Canavalia comprises of underutilized indigenous legumes with several valuable agronomic traits including high nutritional value, stress tolerance and high yield. They are potent crop with scanty genomic information that can be explored to meet the demand of protein rich food for the ever-increasing population. In the present study genomic DNA content of five Canavalia species namely, Canavalia ensiformis, Canavalia gladiata, Canavalia rosea, Canavalia cathartica and Canavalia virosa were estimated using flow cytometry following the pre-optimized protocol. Glycine max Merr. ‘Polanka’ and Solanum lycopersicum L. ‘Stupicke polni rane’ were used as reference standards. With respect to the two reference standards, G. max and S. lycopersicum a variation of genome content of 6% was observed among the five Canavalia species. Since genome size strongly predicts the phenotypic characteristics. So, stomatal number and size of the five species were measured to establish a correlation between genome size and stomatal characteristics. A strong positive correlation (r² = 0.6358 and r2 = 0.907) was observed between stomatal number, size and genomic DNA content among the five species under study. The present work on Canavalia species will be helpful for its genome sequencing and improvement programmes for future use.

n                     Canavalia spp., Underutilized legume, Flow cytometry, Stomatal number, Genome size


References


Beaulieu JM, Leitch IJ, Patel S, Pendharkar A, Knight CA (2008) Genome size is a strong predictor of cell size and stomatal density in angiosperms. New Phytol 179(4):975–986. https://doi.org/10.1111/j.1469-8137.2008.02528.x


Bennett MD, Leitch IJ (2005) Nuclear DNA amounts in angiosperms: progress, problems and prospects. Ann Botany 95(1):45–90. https://doi.org/10.1093/aob/mci003


Bennett MD, Bhandol P, Ilia JL (2000a) Nuclear DNA amounts in angiosperms and their modern uses– 807 new estimates. Ann Botany 86(4):859–909. https://doi.org/10.1006/anbo.2000.1253


Bennett MD, Bhandol P, Ilia JL (2000b) Nuclear DNA amounts in angiosperms and their modern uses– 807 new estimates. Ann Botany 86(4):859–909. https://doi.org/10.1006/anbo.2000.1253


Chalup L, Grabiele M, Solís Neffa V, Seijo G (2014) DNA content in south american endemic species of lathyrus. J Plant Res 127(4):469–80. https://doi.org/10.1007/s10265-014-0637-z


Diakostefani A, Velissaris R, Cvijanovic E, Bulgin R, Pantelides A, Ilia J, Leitch S, Mian JA, Morton, Marybel Soto Gomez, Chapman MA (2024) Genome resources for underutilised legume crops: genome sizes, genome skimming and marker development. Genet Resour Crop Evol 71(1):427–38. https://doi.org/10.1007/s10722-023-01636-2


Doležel J, Bartoš J (2005) Plant DNA Flow Cytometry and Estimation of Nuclear Genome Size. Pp. 99–110 in Annals of Botany. Vol. 95


Doležel J, Greilhuber J, Suda J (2007a) Estimation of nuclear DNA content in plants using flow cytometry. Nat Protoc 2(9):2233–2244. https://doi.org/10.1038/nprot.2007.310


Doležel J, Greilhuber J, Suda J (2007b) Flow cytometry with plants: an overview. Flow Cytometry Plant Cells: Anal Genes Chromosomes Genomes 41–65. https://doi.org/10.1002/9783527610921.ch3


Doyle JJ, Coate JE (2019) Polyploidy, the nucleotype, and novelty: the impact of genome doubling on the biology of the cell. Int J Plant Sci 180(1):1–52


Fonseca VJA, Braga AL, de Almeida RS, da Silva TG, da Silva JCP, de Lima LF, dos Santos MHC, dos Santos Silva RR, Teixeira CS, Coutinho HDM, Morais-Braga MFB (2022) Lectins ConA and ConM extracted from Canavalia ensiformis (L.) DC and Canavalia rosea (Sw.) DC inhibit planktonic Candida albicans and Candida tropicalis. Arch Microbiol. 204(6). https://doi.org/10.1007/s00203-022-02959-x


Greilhuber J, Obermayer R (1997) Genome size and maturity group in Glycine max (soybean). 78


Grime JP (1998) Benefits of plant diversity to ecosystems: immediate, filter and founder effects. J Ecol 86:902–910


Kruthika HS, Rukmangada MS, Naik VG (2023) Genome size, chromosome number variation and its correlation with stomatal characters for assessment of ploidy levels in a core subset of mulberry (Morus Spp.) Germplasm. Gene 881


Jeloudar N, Izadi E, Chamani AA, Shokouhian, Asghari Zakaria R (2019) Induction and identification of polyploidy by Colchicine treatment in Lilium Regale. Cytologia 84(3):271–276. https://doi.org/10.1508/cytologia.84.271


Jiang GF, Li SY, Dinnage R, Cao KF, Simonin KA, Roddy AB (2023) Diverse mangroves deviate from other angiosperms in their genome size, leaf cell size and cell packing density relationships. Ann Botany 131(2):347–360. https://doi.org/10.1093/aob/mcac151


Kang YJ, Satyawan D, Shim S, Lee T, Lee J, Hwang WJ, Kim SK, Lestari P, Laosatit K, Kim KH, Ha TJ, Chitikineni A, Kim MY, Ko JM, Gwag JG, Moon JK, Lee YH, Park BS, Varshney RK, Lee SH. 2015. Draft genome sequence of Adzuki bean, Vigna Angularis. Sci Rep 5. https://doi.org/10.1038/srep08069


Lattier JD, Chen H, Contreras RN (2019) Variation in genome size, ploidy, stomata, and RDNA signals in Althea. J Am Soc Hortic Sci 144(2):130–140. https://doi.org/10.21273/JASHS04618-18


Lomax BH, Ian Woodward F, Leitch IJ, Knight CA, Lake JA (2009) Genome size as a predictor of guard cell length in Arabidopsis Thaliana is independent of environmental conditions. New Phytol 181(2):311–314. https://doi.org/10.1111/j.1469-8137.2008.02700.x


Mabuchi T, Kokubun H, Mii M, Ando T (2005) Nuclear DNA content in the genus Hepatica (Ranunculaceae). J Plant Res 118(1):37–41. https://doi.org/10.1007/s10265-005-0191-9


Mafi Moghaddam S, Oladzad A, Koh C, Ramsay L, Hart JP, Mamidi S, Hoopes G, Sreedasyam A, Wiersma A, Zhao D, Grimwood J, Hamilton JP, Jenkins J, Vaillancourt B, Wood JC, Schmutz J, Kagale S, Porch T, Bett KE, Buell CR, McClean PE. (2021). The Tepary bean genome provides insight into evolution and domestication under heat stress. Nat Commun 12(1). https://doi.org/10.1038/s41467-021-22858-x


Moteetee AN (2016) Canavalia (Phaseoleae, Fabaceae) species in South africa: naturalised and Indigenous. South Afr J Bot 103:6–16. https://doi.org/10.1016/j.sajb.2015.08.013


Ochatt SJ (2008) Flow cytometry in plant breeding. Cytometry Part A 73(7):581–598. https://doi.org/10.1002/cyto.a.20562


Ozias-Akins P, Jarret RL (1994) Nuclear DNA content and ploidy levels in the genus Ipomoea. J Am Soc Hortic Sci 119(1):110–115. https://doi.org/10.21273/jashs.119.1.110


Pati K, Zhang F, and Jacqueline Batley (2019) First report of genome size and ploidy of the underutilized leguminous tuber crop Yam bean (Pachyrhizus erosus and P. tuberosus) by flow cytometry. Plant Genetic Resources: Characterisation Utilisation 17(5):456–459. https://doi.org/10.1017/S1479262119000170


Podwyszyńska Małgorzata (2020) Mirosław Sitarek, Agnieszka Marasek-Ciołakowska, and Urszula Kowalska. Nuclear DNA Content and Phenotypic Traits of the Prunus Rootstocks from Poland’s Gene Resources. Zemdirbyste 107(1):71–78. https://doi.org/10.13080/z-a.2020.107.010


Rayburn A, Lane J, Crawford CM, Rayburn, Juvik JA (2009) Genome size of three Miscanthus species. Plant Mol Biology Report 27(2):184–188. https://doi.org/10.1007/s11105-008-0070-3


Ren L, Huang W, Cannon SB (2019) Reconstruction of ancestral genome reveals chromosome evolution history for selected legume species. New Phytol 223(4):2090–2103. https://doi.org/10.1111/nph.15770


Sato S, Nakamura Y, Kaneko T, Asamizu E, Kato T, Nakao M, Sasamoto S, Watanabe A, Ono A, Kawashima K, Fujishiro T, Katoh M, Kohara M, Kishida Y Chiharu minami, Shinobu nakayama, Naomi nakazaki, Yoshimi shimizu, Sayaka shinpo, Chika takahashi, Tsuyuko wada, Manabu yamada, Nobuko ohmido, Makoto hayashi, Kiichi fukui, Tomoya baba, Tomoko nakamichi, Hirotada mori, and Satoshi tabata. 2008. Genome structure of the legume, Lotus japonicus. DNA Res 15(4):227–239. https://doi.org/10.1093/dnares/dsn008


Schmutz J, Cannon SB, Schlueter J, Ma J, Mitros T, Nelson W, Hyten DL, Song Q, Thelen JJ, Cheng J, Xu D, Hellsten U, May GD, Yu Y, Sakurai T, Umezawa T, Bhattacharyya MK, Devinder Sandhu, Babu Valliyodan, Erika Lindquist, Myron Peto, David Grant, Shengqiang Shu, David Goodstein, Kerrie Barry, Montona Futrell-Griggs, Abernathy B, Du J, Tian Z, Zhu L, Navdeep Gill, Trupti Joshi, Marc Libault, Anand Sethuraman, Xue Cheng Zhang, Kazuo Shinozaki, Henry, Nguyen T, Wing RA, Perry Cregan, James Specht, Jane Grimwood, Dan Rokhsar, Gary Stacey, Shoemaker RC, Jackson SA (2010) Genome Sequence of the Palaeopolyploid Soybean. Nature 463(7278):178–83. https://doi.org/10.1038/nature08670


Sharma S, Kaushik S, and Soom Nath Raina (2019) Estimation of nuclear DNA content and its variation among Indian tea accessions by flow cytometry. Physiol Mol Biology Plants 25(2):339–346. https://doi.org/10.1007/s12298-018-0587-3


She C, Wen L, Wei, and Xiang Hui Jiang (2017) Molecular cytogenetic characterization and comparison of the two cultivated Canavalia species (Fabaceae). Comp Cytogenet 11(4):579–600. https://doi.org/10.3897/CompCytogen.v11i4.13604


Sheng J, Zeng XHX, Li Y, Zhou F, Hu Z, Jin S, and Ying Diao (2016) Nuclear DNA content in Miscanthus sp. and the geographical variation pattern in Miscanthus lutarioriparius. Sci Rep 6. https://doi.org/10.1038/srep34342


Siddhuraju P, Becker K (2001) Species/Variety Differences in Biochemical Composition and Nutritional Value of Indian Tribal Legumes of the Genus Canavalia. Nahrung/Food 45(4):224–33. https://doi.org/10.1002/1521-3803(20010801)45:4%3C224::AID-FOOD224%3E3.0.CO;2-V


Smýkal P, Coyne CJ, Ambrose MJ, Maxted N, Schaefer H, Blair MW, Berger J, Greene SL, Nelson MN, Besharat N, Vymyslický Tomáš, Toker C, Saxena RK, Roorkiwal M, Pandey MK, Jinguo H, Ying H, Li, Li X, Wang Y, Guo, Li J, Qiu RJ, Redden, Varshney RK (2015) Legume crops phylogeny and genetic diversity for science and breeding. CRC Crit Rev Plant Sci 34(1–3):43–104. https://doi.org/10.1080/07352689.2014.897904


Sridhar KR, Seena S (2006) Nutritional and antinutritional significance of four unconventional legumes of the genus Canavalia - A comparative study. Food Chem 99(2):267–288. https://doi.org/10.1016/j.foodchem.2005.07.049


Nagl W, Treviranus A (1995) A flow cytometric analysis of the nuclear 2 C DNA content in 17 Phaseolus species (53 Genotypes). Plant Biol 108:403–406


Yan H, Martin SL, Bekele WA, Latta RG, Diederichsen A, Peng Y, Tinker NA (2016) Genome size variation in the genus Avena. Genome 59(3):209–220. https://doi.org/10.1139/gen-2015-0132


Ziemmer JK, Patrícia Sperotto LN, Vieira, Hugo PF, Fraga E, Amano M, Reginato, and Renato Goldenberg (2024) Genome size and guard cell length are associated in four species of Miconia (Miconieae, Melastomataceae). Revista Brasileira De Bot 47(1):199–204. https://doi.org/10.1007/s40415-023-00962-0

 


Author Information


CSIR-National Botanical Research Institute, Lucknow, India