Evaluation of different plant aqueous extracts for effective management of Thielaviopsis paradoxa causal agent of the black scorch disease in date palm fronds in Morocco

, , , , ,


Research Articles | Published:

DOI: 10.1007/s42535-024-01078-w
First Page: 70
Last Page: 78
Views: 1762

Keywords: Palm tree, Fungal disease, n T. paradoxan , Plant extract, Antifungal, Phytochemicals


Abstract


Date palm plays an essential role in the Moroccan economy today. However, the plantations are vulnerable to contamination by fungi such as Thielaviopsis paradoxa, a pathogen that causes black scorch disease. The objectives of present investigation are to report the antifungal efficacy of aqueous extracts from five species—Eucalyptus globulus, Olea europaea, Euonymus japonicus, Nerium oleander, and Ficus microcarpa —against T. paradoxa, tested for spore germination inhibition and radial growth inhibition. Additionally, this study aims to identify the richness of these extracts in polyphenols and flavonoids and to evaluate their antioxidant properties. The extracts of these plants showed significant differences in their antifungal activity (p < 0.01). Notably, this study revealed that the aqueous extract of E. globulus at 8% exhibits strong antifungal activity, inhibiting spore germination by 76.15% and reducing radial growth by 96.15%. The efficacy of this extract is comparable to that of Chlorothalonil (2 g/L) and surpasses that of Fosetyl-aluminium (2.5 g/L). Correlation analysis demonstrated a relationship between phenolic compound content and both antioxidant along with antifungal activities, suggesting that these bioactive polyphenol compounds play a significant role in the observed effects.

Palm tree, Fungal disease, n                     T. paradoxan                  , Plant extract, Antifungal, Phytochemicals


References


Abdelmonem AM, Rasmy MR (2007) Major diseases of date palm and their control. Commun Inst for Bohem 23:9–23


Ajdari Z, Ebrahimpour A, Abdul Manan M, Hamid M, Mohamad R, Ariff AB (2011) Nutritional requirements for the improvement of growth and sporulation of several strains of Monascus purpureus on solid state cultivation. J Biomed Biotechnol 2011:1–9. https://doi.org/10.1155/2011/487329


Ameziane N, Boubaker H, Boudyach H, Msanda F, Jilal A, Ait Benaoumar A (2007) Antifungal activity of Moroccan plants against citrus fruit pathogens. Agron Sustain Dev 27:273–277. https://doi.org/10.1051/agro:2007022


Andleeb S, Alsalme A, Al-Zaqri N, Warad I, Alkahtani J, Bukhari SM (2020) In-vitro antibacterial and antifungal properties of the organic solvent extract of Argemone mexicana L. J King Saud Univ Sci 32(3):2053–2058. https://doi.org/10.1016/j.jksus.2020.01.044


Assia B, Abdelkader A, Fatiha C, Taibi A, Guenaia A, Kerzabi R (2022) Phytochemical screening and antioxidant properties of nerium oleander growing in Algeria. Egypt Acad J Biol Sci C Physiol Mol Biol 14(2):523–528. https://doi.org/10.21608/EAJBSC.2022.295633


Badoc A (2001) Effet de dérivés calciques sur le développement de moisissures lors de la conservation des poires. Bull Soc Pharm Bordeaux 140:79–88


Bammou M, Sellam K, Jaiti F, El Rhaffari L, Echchagadda G, Ibijbijen J, Nassiri L (2015) Ethnopharmacological study and antifungal activity of three plants (Asteraceae Family). Asian J Nat Appl Sci 4:13–24


Borges AF, De Alcântara NF, Da Silva MK, Júnior JE, Júnior NS et al (2019) Thielaviopsis ethacetica the etiological agent of sugarcane pineapple sett rot disease in Brazil. Trop Plant Pathol 44:460–467. https://doi.org/10.1007/s40858-019-00298-9


Bouhlali EDT, Bammou M, Sellam K, Benlyas M, Alem C, Filali-Zegzouti Y (2016) Evaluation of antioxidant, antihemolytic and antibacterial potential of six Moroccan date fruit (Phoenix dactylifera L.) varieties. J King Saud Univ Sci 28:136–142. https://doi.org/10.1016/j.jksus.2016.01.002


Bouhlali EDT, Derouich M, Meziani R, Essarioui A (2021) Antifungal potential of phytochemicals against Mauginiella scaettae, the plant pathogen causing inflorescence rot of date palm. Scientifica. https://doi.org/10.1155/2021/1896015


Chidi F, Bouhoudan A, Khaddor M (2020) Antifungal effect of the tea tree essential oil (Melaleuca alternifolia) against Penicillium griseofulvum and Penicillium verrucosum. J King Saud Univ Sci 32(3):2041–2045. https://doi.org/10.1016/j.jksus.2020.02.012


Conde E, Cadahía E, García-Vallejo MC (1997) Low molecular weight polyphenols in leaves of Eucalyptus camaldulensis, Eucalyptus globulusand and Eucalyptus rudis. Phytochem Anal 8(4):186–193. https://doi.org/10.1002/(SICI)1099-1565(199707)8:4%3c186::AID-PCA355%3e3.0.CO;2-7


Dakhia N, Bensalah M, Romani M, Djoudi A, Belhamra M (2013) Etat phytosanitaire et diversité variétale du palmier dattier au bas Sahara-Algérie. Journal Algérien Des Régions Arides 12(1):5–17


Deng YC, Chen KL, Yu YZ, Deng ZY, Kong ZW (2010) In vitro antifungal activity of the extract and compound from Acorus tatarinowii against seven plant pathogenic fungi. Agric Sci China 9(1):71–76. https://doi.org/10.1016/S1671-2927(09)60069-9


Gros-Balthazard M, Battesti V, Ivorra S, Paradis L, Aberlenc F, Zango O (2020) On the necessity of combining ethnobotany and genetics to assess agrobiodiversity and its evolution in crops: a case study on date palms (Phoenix dactylifera L.) in Siwa Oasis. Egypt Evol Appl 13(8):1818–1840. https://doi.org/10.1111/eva.12930


Khelouf I, Karoui IJ, Lakoud A, Hammami M, Abderrabba M (2023) Comparative chemical composition and antioxidant activity of olive leaves Olea europaea L. of Tunisian and Algerian varieties. Heliyon 9(12):e22217. https://doi.org/10.1016/j.heliyon.2023.e22217


Kumari P, Rani S (2020) In vitro antioxidant assay of Ficus microcarpa Linn. leaf extract. IOSR J Biotechnol Biochem (IOSR-JBB) 6(1):31–38


Majumdar N, Chandra Mandal N, Niren Majumdar C (2019) Screening of different botanicals extract on two polyphagous postharvest pathogens from mango and banana. J Pharmacogn Phytochem 8(3):4253–4256


Mamarasulov B, Davranov K, Umruzaqov A, Ercisli S, Ali Alharbi S, Ansari MJ (2023) Evaluation of the antimicrobial and antifungal activity of endophytic bacterial crude extracts from medicinal plant Ajuga turkestanica (Rgl.) Brig (Lamiaceae). King Saud Univ Sci 35(4):102644. https://doi.org/10.1016/j.jksus.2023.102644


Marimuthu S, Karthic C, Mostafa AA, Mohammed Al-Enazi N, Abdel-Raouf N, Nageh Sholkamy E (2020) Antifungal activity of Streptomyces sp. SLR03 against tea fungal plant pathogen Pestalotiopsis theae. J King Saud Univ Sci 32(8):3258–3264. https://doi.org/10.1016/j.jksus.2020.08.027


Mostafa AAF, Yassin MT, Al–Askar A A, Al-Otibi FO, (2023) Phytochemical analysis, antiproliferative and antifungal activities of different Syzygium aromaticum solvent extracts. J King Saud Univ Sci 35(1):102362. https://doi.org/10.1016/j.jksus.2022.102362


Park JY, Kim JY, Son YG, Seong DK (2023) Characterization of chemical composition and antioxidant activity of Eucalyptus globulus leaves under different extraction conditions. Appl Sci 13(7):9984. https://doi.org/10.3390/app13179984


Paulin-Mahady AE, Harrington TC, McNew D (2002) Phylogenetic and taxonomic evaluation of Chalara, Chalaropsis, and Thielaviopsis anamorphs associated with Ceratocystis. Mycologia 94:62–72. https://doi.org/10.1080/15572536.2003.11833249


Pereira MN, Conceição RBD, Cruz JCS, Andrade MC (2020) Effect of essential oils on the fungus Thielaviopsis paradoxa. Revista Ambiência 14:513–521


Pratiwi WD, Sulhaswardi R (2023) Inhibitory capacity of cinnamon oil (Cinnamomum burmannii) to control Thielaviopsis paradoxa causing pointed end rot of snake fruit (Salacca zalacca) through in vitro. AIP Conf Proc 10(1063/5):0144043


Sanchez V, Rebolledo O, Picaso RM, Cardenas E, Cordova J, Gonzalez O, Samuels GJ (2007) In vitro antagonism of Thielaviopsis paradoxa by Trichoderma longibrachiatum. Mycopathologia 163:49–58. https://doi.org/10.1007/s11046-006-0085-y


Sedra MH (2015) Date palm status and perspective in Morocco. In: AlKhayri JM, Jain SM, Johnson DV (eds) Date palm genetic resources and utilization. Springer, Dordrecht, pp 257–323. https://doi.org/10.1007/978-94-017-9694-1_8


Taguri T, Tanaka T, Kouno I (2006) Antibacterial spectrum of plant polyphenols and extracts depending upon hydroxyphenyl structure. Biol Pharm Bull 29(11):2226–2235. https://doi.org/10.1248/bpb.29.2226


Wang H, Fu L, Li C, Zhang X, Narcisse KE, Qi H, Zheng F (2023) Tannic acid exerts antifungal activity in vitro and in vivo against Alternaria alternata causing postharvest rot on apple fruit. Physiol Mol Plant Pathol 125:102012. https://doi.org/10.1016/j.pmpp.2023.102012




 


Author Information


Biology, Environment and Health Team, Moulay Ismail University of Meknes, Faculty of Sciences and Technology Errachidia, Errachidia, Morocco