Fruit and seed morphology and in vitro seed germination of Mosiera bullata, an endemic endangered Cuban species

*Article not assigned to an issue yet

, , , , , , ,


Research Articles | Published:

Print ISSN : 0970-4078.
Online ISSN : 2229-4473.
Website:www.vegetosindia.org
Pub Email: contact@vegetosindia.org
Doi: 10.1007/s42535-023-00635-z
First Page: 0
Last Page: 0
Views: 1117


Keywords: Myrtaceae family, Establishment, Serpentine soils, Propagation


Abstract


Mosiera bullata (Britton & P. Wilson) is a plant species belonging to the Myrtaceae family, endemic to the serpentine soils of the central region of Cuba. This species is in danger of extinction. Its ability to hyperaccumulate metals helps it tolerate nickel in this soil. In addition, the leaf extracts show significant antimicrobial activities against plant pathogens. The properties and benefits of M. bullata must be maintained through a combination of ex situ and in situ conservation measures. The objective of this study was to determine the morpho-physiological characteristics of M. bullata fruits and seeds and to evaluate the in vitro germination of seeds under controlled humidity, photoperiod, photosynthetic photon flux density, and temperature in a germination chamber. The effect of time for seed disinfection (10, 20, and 30 min) with 2% (w/v) sodium hypochlorite was studied. In addition, the effect of lighting and the content of nitrate salts in the culture medium MS on seed germination was determined. Fruits, seeds and embryos of M. bullata showed representative characteristics of the genus Mosiera Small. Our results showed percentage of seed viability over 85 and 83% of seed germination. Sodium hypochlorite at a concentration of 2% (w/v) for 20 min under dark conditions showed the best disinfection effect and seed germination. Reducing the nitrate content in the medium MS by half increased the germination percentage. With the present study, it was possible to describe the fruit and seed morphology of M. bullata, and for the first time, an efficient method for in vitro propagation of M. bullata seeds was developed.


Myrtaceae family, Establishment, Serpentine soils, Propagation


*Get Access

(*Only SPR Members can get full access. Click Here to Apply and get access)

Advertisement

References


Alfonso D, Cicatelli A, Guarino F, Rodríguez D, Castiglione S (2018) In vitro propagation of Leucocroton havanensis Borhidi (Euphorbiaceae): a rare serpentine-endemic species of Cuba. Plant Biosyst 152(4):649–656. https://doi.org/10.1080/11263504.2017.1311961


Altare M, Trione S, Guevara J, Cony M (2006) Stimulation and promotion of germination in Opuntia ficus-indica seeds. J Prof Assoc Cactus Dev 8:91–100


Armiliato A, Paolazzi J, Sidnei CL, Schafer G (2018) Fotoblastismo e. Germinação de sementes. Photoblastism and germination of Campomanesia aurea (Myrtaceae) seeds. Biosci J Uberlândia 34(6):1505–1512. https://doi.org/10.1439/BJ-v34n6a2018-39530


Barampuram S, Allen G, Krasnyanski S (2014) Effect of various sterilization procedures on the in vitro germination of cotton seeds. Plant Cell Tissue Organ Cult 118(1):179–185. https://doi.org/10.1007/s11240-014-0472-x


Baskin JM, Baskin CC (2021) The great diversity in kinds of seed dormancy: a revision of the Nikolaeva-Baskin classification system for primary seed dormancy. Seed Sci Res 31(4):249–277. https://doi.org/10.1017/S096025852100026X


Bhatia P, Bhatia NP, Ashwath N (2002) In vitro propagation of Stackhousia tryonii Bailey (Stackhousiaceae): a rare and serpentine-endemic species of central Queensland. Aust Biodivers Conserv 11(8):1469–1477. https://doi.org/10.1023/a:1016252207054


Brady KU, Kruckeberg AR, Bradshaw HD Jr (2005) Evolutionary ecology of plant adaptation to serpentine soils. Ann Rev Ecol Evol Syst. https://doi.org/10.1146/annurev.ecolsys.35.021103.105730


Cárdenas C, Araque J, Bohorquez M, Hernández Y, Pacheco J (2019) In vitro propagation of Bucquetia glutinosa, endemic species of the Colombian Paramos. Rodriguésia. https://doi.org/10.1590/2175-7860201970057


Cruz AJU, Ramos ZA (2008) Los géneros Mosiera Small, Psidium L., Calycolpus Berg y Pimenta Lindl. (Myrtinae-Myrtaceae) para la Flora de la República de Cuba. Diversidad y estado de conservación. Revista Ecovida 1(1):56–70


Cruz AJU, González-Oliva L, Ramos ZA, Carbó RN (2011) La subtribu Myrtinae (Myrtaceae) en la flora de Cuba. Revista del Jardín Botánico Nacional 32/33:5–10


da Silva PRD, Rispoli RG, Minozzo MM, Jobim LH, Junges M, Stefenon VM (2014) A regenerative route for Eugenia uniflora L. (Myrtaceae) through in vitro germination and micropropagation. Ann For Res 57(1):39–45. https://doi.org/10.1528/afr.2014.179


dos Santos MAC, do Rêgo MM, de Queiróz MA, Caproni DTR, Dietrich OHS, Santos AF, Otoni WC (2020) In vitro growth performance of Psidium guajava and P. guineense plantlets as affected by culture medium formulations. Vegetos 33(3):435–445. https://doi.org/10.1007/s42535-020-00125-6


Goya-Jorge E, Fernández-Expósito O, Herrero-Martínez JM, Simó-Alfonso EF, Castañeda-Noa I, Jorge-Rodríguez ME (2022) Chemical composition of essential oils from the leaves of Mosiera bullata (Britton & P. Wilson), an unexplored Cuban endemic species. J Essent Oil Res 34(2):123–130. https://doi.org/10.1080/10412905.2021.2022021


Gunarathne V, Rajakaruna N, Gunarathne U, Biswas JK, Raposo ZA, Vithanage M (2019) Influence of soil water content and soil amendments on trace metal release and seedling growth in serpentine soil. J Soils Sediments 19(12):3908–3921. https://doi.org/10.1007/s11368-019-02349-9


Karatassiou M, Giannakoula A, Tsitos D, Stefanou S (2021) Response of three Greek populations of Aegilops Triuncialis (Crop Wild Relative) to serpentine soil. Plants 10(3):516. https://doi.org/10.3390/plants10030516


Khattak AB, Zeb A, Khan M, Bibi N, Khalil SA, Khattak IMS (2007) Influence of germination techniques on phytic acid and polyphenols content of chickpea (Cicer arietinum L) sprouts. Food Chem 104:1074–1079. https://doi.org/10.1016/j.foodchem.2007.01.022


Kim JM, Shim JK (2008) Toxic effects of serpentine soils on plant growth. J Ecol Environ 31(4):327–331. https://doi.org/10.5141/jefb.2008.31.4.327


Lamarca EV, Silva CV, Barbedo CJ (2011) Limites térmicos para a germinação em função da origen de sementes de espécies de Eugenia (Myrtaceae) nativas do Brasil. Acta Botanica Brasilica 25(2):293–300. https://doi.org/10.1590/S010233062011000200005


Lev J, Blahovec J (2017) Imbibition of wheat seeds: application of image analysis. Int Agrophys 31(4):475. https://doi.org/10.1515/intag-2016-0072


Maldonado-Peralta MA, De Los Santos GG, García-Nava JR, Ramírez-Herrera C, Hernández-Livera A, Valdez-Carrazco JM, Corona-Torres T, Cetina-Alcalá VM (2016) Seed viability and vigour of two nanche species (Malpighia mexicana and Byrsonima crassifolia). Seed Sci Technol 44(1):168–176. https://doi.org/10.15258/sst.2016.44.1.03


Marszał-Jagacka J, Kromer K (2011) In vitro propagation of rare and endangered serpentine fern species. In: Kumar A, Fernández H, Revilla M (eds) Working with ferns. Springer, New York. https://doi.org/10.1007/978-1-4419-7162-3_11


Martin AC (1946) The comparative internal morphology of seeds. Am Midl Nat 36(3):513–660. https://doi.org/10.2307/2421457


Martínez-Villegas YM, Andrade-Rodríguez M, Colinas-León MT, Villegas-Torres OG, Castillo-Gutiérrez A, Alia-Tejacal I (2015) Efecto de las sales inorgánicas del medio de cultivo en el crecimiento de pascuita (Euphorbia leucocephala Lotsy). Revista fitotecnia mexicana 38(4):369–374. https://doi.org/10.35196/rfm.2015.4.369


Meindl GA, Ashman TL (2017) Effects of soil metals on pollen germination, fruit production, and seeds per fruit differ between a Ni hyperaccumulator and a congeneric nonaccumulator. Plant and Soil 420(1):493–503. https://doi.org/10.1007/s11104-017-3425-4


Meindl GA, Bain DJ, Ashman TL (2014) Nickel accumulation in leaves, floral organs and rewards varies by serpentine soil affinity. AoB Plants. https://doi.org/10.1093/aobpla/plu036


Méndez D, Escalona-Arranz JC, Foubert K, Matheeussen A, Van der Auwera A, Piazza S, Cuypers A, Cos P, Pieters L (2021) Chemical and pharmacological potential of coccoloba cowellii, an endemic endangered plant from Cuba. Molecules 26(4):935. https://doi.org/10.3390/molecules26040935


Méndez-Orozco OR, Faife-Cabrera M, Castañeda-Noa I (2015) Flora y vegetación de las serpentinas ubicadas al suroeste de Santa Clara, Villa Clara, Cuba. Revista Del Jardín Botánico Nacional 36:55–64


Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue culture. Physiol Plant 5:473–497. https://doi.org/10.1111/j.1399-3054.1962.tb08052.x


Nadarajan J, Walters C, Pritchard HW, Ballesteros D, Colville L (2023) Seed longevity—the evolution of knowledge and a conceptual framework. Plants 12(3):471. https://doi.org/10.3390/plants12030471


Pérez-Gómez L, Mendoza J, Quirós Y, Leiva-Mora M, Martinez-Montero ME, Acosta-Suarez M, Ferrer A, Trujillo R, Pérez AT (2022) Antifungal activity of Mosiera bullata (Britton & P. Wilson) extract against phytopathogenic fungi. Vegetos. https://doi.org/10.1007/s42535-022-00540-x


Quiala E, Montalvo G, Matos J, Mederos R, Alvarado-Capó Y, de Feria M, Chávez M (2004) Establecimiento in vitro de Eugenia squarrosa: una especie endémica de Santa Clara (Cuba) en peligro de extinción. Biotecnología vegetal 4(1):49–53


Ranal M, Santana D (2006) How and why to measure the germination process? Br J Bot 29:1–11. https://doi.org/10.1590/s0100-84042006000100002


Reeves RD, Baker AJM, Borhidi A, Berazain R (1999) Nickel hyperaccumulation in the serpentine flora of Cuba. Ann Bot 83(1):29–38. https://doi.org/10.1006/anbo.1998.0786


Rego SS, Nogueira AC, Kuniyoshi YS, Santos ÁF (2009) Germinação de sementes de Blepharocalyx salicifolius (H.B.K.) Berg. em diferentes substratos e condições de temperaturas, luz e umidade. Revista Brasileira de Sementes 31(2):212–220. https://doi.org/10.1590/S0101-31222009000200025


Rego SS, Cosmo NL, Gogosz AM, Kuniyoshi YS, Nogueira AC (2011) Caracterização morfológica e germinação de sementes de Curitiba prismatica (D. Legrand) Salywon & Landrum. Revista Brasileira De Sementes 33:616–625. https://doi.org/10.1590/s0101-31222011000400003


Rodríguez A, Andrade ML (2017) Characterization of soil physico-chemical parameters and limitations for revegetation in serpentine quarry soils (NW Spain). J Soils Sediments 17(5):1321–1330. https://doi.org/10.1007/s11368-015-1284-2


Roebuck CJ, Siebert SJ, Berner JM, Marcelo-Silva J (2022) The influence of serpentine soil on the early development of a non-serpentine African thistle, Berkheya radula (Harv.) De Wild. Plants 11(18):2360. https://doi.org/10.3390/plants11182360


Saad RF, Kobaissi A, Amiaud B, Ruelle J, Benizri E (2018) Changes in physicochemical characteristics of a serpentine soil and in root architecture of a hyperaccumulating plant cropped with a legume. J Soils Sediments 18(5):1994–2007. https://doi.org/10.1007/s11368-017-1903-1


Salih AM, Alaradi HJ, Ibrahim MA, Alhello AA (2019) Effect of some methods of planting in guava (Psidium guajava L) seed germination. Plant Arch 19(2):3057–3062


Salywon AM, Landrum LR (2014) A new species of Mosiera (Myrtaceae) from the Sierra de Nipe, Cuba. Brittonia 66(3):274–277. https://doi.org/10.1007/s12228-014-9330-8


Sant’Ana CRDO, Paiva R, Reis MVD, Silva DPCD, Silva LC (2018) In vitro propagation of Campomanesia rufa: an endangered fruit species. Ciência e Agrotecnologia 42:372–380. https://doi.org/10.1590/1413-70542018424011018


Silva MC, Villegas M, García PS, González GA, Mendoza MNR, Posadas LMR (2004) Efecto del potencial osmótico y contenido de Ca en el medio de cultivo sobre la distribución de Ca2+ y K+, producción de biomasa y necrosis apical de vid “R110.” Interciencia 29:384–388


Świeca M, Gawlik-Dziki U, Kowalczyk D, Złotek U (2012) Impact of germination time and type of illumination on the antioxidant compounds and antioxidant capacity of Lens culinaris sprouts. Sci Hortic 140:87–95. https://doi.org/10.1016/j.scienta.2012.04.005


Visioli G, Menta C, Gardi C, Conti FD (2013) Metal toxicity and biodiversity in serpentine soils: application of bioassay tests and microarthropod index. Chemosphere 90(3):1267–1273. https://doi.org/10.1016/j.chemosphere.2012.09.081


Visioli G, Sanangelantoni AM, Conti FD, Bonati B, Gardi C, Menta C (2019) Above and belowground biodiversity in adjacent and distinct serpentine soils. Appl Soil Ecol 133:98–103. https://doi.org/10.1016/j.apsoil.2018.09.013013

 


Acknowledgements


The investigations were carried out within the framework of the sectorial project P131LH0030101: “Bioprospecting and propagation of promising plants for animal and plant health in the central-eastern region of Cuba” coordinated by Dr.C. Enrique Molina Pérez. This research was supported by the Bioplantas Centre, Universidad de Ciego de Ávila. Authors are grateful to M. Sc. Mariela Cid Ruiz and M. Sc. Osbel Mosqueda Frómeta for their important scientific suggestion and Lic. Rafael Alberto Rodríguez Cabrera, for his collaboration during the investigation.


Author Information


Pérez-Gómez Lianny
Bioplantas Centre, Universidad de Ciego de Ávila Máximo Gómez Báez, Ciego de Ávila, Cuba

Quirós-Molina Yemeys
Bioplantas Centre, Universidad de Ciego de Ávila Máximo Gómez Báez, Ciego de Ávila, Cuba


Acosta-Fernández Yanier
Bioplantas Centre, Universidad de Ciego de Ávila Máximo Gómez Báez, Ciego de Ávila, Cuba


Nápoles-Borrero Lelurlys
Bioplantas Centre, Universidad de Ciego de Ávila Máximo Gómez Báez, Ciego de Ávila, Cuba


Martinez-Montero Marcos Edel
Facultad de Ciencias Agropecuarias, Universidad de Ciego de Ávila Máximo Gómez Báez, Ciego de Ávila, Cuba
cubaplantas@gmail.com
Leiva-Mora Michel
Lab. de Biotecnología, Facultad de Ciencias Agropecuarias, Universidad Técnica de Ambato (UTA-DIDE), Cantón Cevallos vía a Quero, Sector El Tambo-La Universidad, Cevallos, Ecuador

Pérez-Martínez Aurora Terylene
Bioplantas Centre, Universidad de Ciego de Ávila Máximo Gómez Báez, Ciego de Ávila, Cuba

,
Trujillo Sanchez Reinaldo
Bioplantas Centre, Universidad de Ciego de Ávila Máximo Gómez Báez, Ciego de Ávila, Cuba