*Article not assigned to an issue yet
Kumar Shubham, Singh Jasdeep, Dwibedi Vagish, Swati, Singhal Divya, Sharma Swati
Keywords: Himalayan phytochemicals, Epigenetics, DNA methylation, MicroRNAs, Histone modification
Epigenetic dysregulation through DNA methylation of the promoter, chromatin remodelling via histone modifying enzymes, and miRNA-mediated post-transcriptional gene silencing of target genes, for example, cell cycle regulators, signal transducers, transcription factors, nuclear receptors, and gene products for DNA repair and apoptosis, contribute to altered functions of the cells and ultimately cause disease or disorder. Numerous Himalayan medicinal plants have traditionally been recognised for treating various human diseases. Phytochemicals or bioactive agents isolated from these medicinal plants exhibit antioxidant activity, detoxification, anti-cancer activity, neuro-pharmacological activity, and immunity-potentiating properties. Thus, these phytochemicals effectively prevent various chronic diseases like cancer, diabetes and heart disease. This review paper highlights the potential roles and mode of action of Himalayan phytochemicals in targeting epigenetic alterations and discusses their potential for safety and clinical efficacy. Currently, very limited literature is available on the role of Himalayan phytochemicals and their role in epigenetic modulation.
Abbas A, Hall JA, Patterson WL, Ho E, Hsu A, Al-Mulla F, Georgel PT (2016) Sulforaphane modulates telomerase activity via epigenetic regulation in prostate cancer cell lines. Biochem Cell Biol 94(1):71–81. https://doi.org/10.1139/bcb-2015-0038
Abderrahmane M, Ahmed L, Farid O, Zegzouti Y, Hajji L, Eddouks M (2009) Mechanistic study of antidiabetic effect of Chamaemelum nobile in diabetic mice. In: Eddouks M (ed) Advances in phytotherapy research. Research Signpost, India, pp 161–173
Amalraj A, Gopi S (2017) Medicinal properties of Terminalia arjuna (Roxb.) Wight & Arn.: a review. J Tradition Complement Med 7(1):65–78. https://doi.org/10.1016/j.jtcme.2016.02.003
An J, Yang H, Zhang Q, Liu C, Zhao J, Zhang L, Chen B (2016) Natural products for treatment of osteoporosis: the effects and mechanisms on promoting osteoblast-mediated bone formation. Life Sci 147:46–58. https://doi.org/10.1016/j.lfs.2016.01.024
Arora I, Sharma M (2019) Combinatorial epigenetics impact of polyphenols and phytochemicals in cancer prevention and therapy. Int J Mol Sci 20(18):4567. https://doi.org/10.3390/ijms20184567
Atlas D (2015) International diabetes federation. IDF diabetes atlas, 7th edn. IDF, Brussels, Belgium
Audia JE, Campbell RM (2016) Histone modifications and cancer. Cold Spring Harb Perspect Biol 8(4):a019521. https://doi.org/10.1101/cshperspect.a019521
Ayyanar M, Subash-Babu P (2012) Syzygium cumini (L.) Skeels: a review of its phytochemical constituents and traditional uses. Asian Pac J Trop Biomed 2(3):240–246. https://doi.org/10.1016/S2221-1691(12)60050-1
Bahna SG, Niles LP (2018) Epigenetic regulation of melatonin receptors in neuropsychiatric disorders. Br J Pharmacol 175(16):3209–3219. https://doi.org/10.1111/bph.14058
Barker DJP (2004) The developmental origins of well–being. Philos Trans R Soc Lond Ser B Biol Sci 359(1449):1359–1366. https://doi.org/10.1098/rstb.2004.1518
Barker DJP (2007) The origins of the developmental origins theory. J Intern Med 261(5):412–417. https://doi.org/10.1111/j.1365-2796.2007.01809.x
Belwal T, Bisht A, Devkota HP, Ullah H, Khan H, Pandey A, Bhatt ID, Echeverría J (2020) Phytopharmacology and clinical updates of Berberis species against diabetes and other metabolic diseases. Front Pharmacol. https://doi.org/10.3389/fphar.2020.00041
Benard A, Goossens-Beumer IJ, van Hoesel AQ, de Graaf W, Horati H, Putter H, Zeestraten EC, van de Velde CJ, Kuppen PJ (2014) Histone trimethylation at H3K4, H3K9 and H4K20 correlates with patient survival and tumor recurrence in early-stage colon cancer. BMC Cancer 14(1):531. https://doi.org/10.1186/1471-2407-14-531
Berdasco M, Esteller M (2010) Aberrant epigenetic landscape in cancer: how cellular identity goes awry. Dev Cell 19(5):698–711. https://doi.org/10.1016/j.devcel.2010.10.005
Berletch JB, Liu C, Love WK, Andrews LG, Katiyar SK, Tollefsbol TO (2008) Epigenetic and genetic mechanisms contribute to telomerase inhibition by EGCG. J Cell Biochem 103(2):509–519. https://doi.org/10.1002/jcb.21417
Biterge B (2016) A mini review on post-translational histone modifications. MOJ Cell Sci Rep. https://doi.org/10.15406/mojcsr.2016.03.00047
Brait M, Sidransky D (2011) Cancer epigenetics: above and beyond. Toxicol Mech Methods 21(4):275–288. https://doi.org/10.3109/15376516.2011.562671
Buenz EJ, Johnson HE, Beekman EM, Motley TJ, Bauer BA (2005) Bioprospecting rumphius’s ambonese herbal: volume I. J Ethnopharmacol 96(1–2):57–70. https://doi.org/10.1016/j.jep.2004.08.016
Busch C, Burkard M, Leischner C, Lauer UM, Frank J, Venturelli S (2015) Epigenetic activities of flavonoids in the prevention and treatment of cancer. Clin Epigenetics 7(1):64. https://doi.org/10.1186/s13148-015-0095-z
Casanova LM, da Silva D, Sola-Penna M, de Magalhães Camargo LM, de Moura Celestrini D, Tinoco LW, Costa SS (2014) Identification of chicoric acid as a hypoglycemic agent from Ocimum gratissimum leaf extract in a biomonitoring in vivo study. Fitoterapia 93:132–141. https://doi.org/10.1016/j.fitote.2013.12.024
Cheng Z, Zheng L, Almeida FA (2018) Epigenetic reprogramming in metabolic disorders: nutritional factors and beyond. J Nutr Biochem 54:1–10. https://doi.org/10.1016/j.jnutbio.2017.10.004
Chun SW, Cha BY, Ko KS, Ryu AJ, Kim YJ, Kim SJ (2014) PO227 gender differences of diabetic peripheral neuropathy in Korea. Diabetes Res Clin Pract 106:S164–S165. https://doi.org/10.1016/S0168-8227(14)70521-2
Cutter AR, Hayes JJ (2015) A brief review of nucleosome structure. FEBS Lett 589(20 Part A):2914–2922. https://doi.org/10.1016/j.febslet.2015.05.016
Dandekar P, Ramkumar S, RaviKumar A (2021) Structure–activity relationships of pancreatic α-amylase and α-glucosidase as antidiabetic targets. Bioactive natural products. Elsevier, Amsterdam, pp 381–410
Drețcanu G, Iuhas CI, Diaconeasa Z (2021) The involvement of natural polyphenols in the chemoprevention of cervical cancer. Int J Mol Sci 22(16):8812. https://doi.org/10.3390/ijms22168812
El-Sherif WT, Sayed SK, Galal SH, Makhlouf HA, Hassan AT, Yousef HA (2016) Diagnostic role of RASSF1A and p16INK4a promoter gene hypermethylation in serum DNA of lung cancer patients: clinicopathological significance. Egypt J Immunol 23(2):1–16
Enwere OO, Salako BL, Falade CO (2010) Prescription and cost consideration at a diabetic clinic in Ibadan, Nigeria: a report. Ann Ibadan Postgrad Med. https://doi.org/10.4314/aipm.v4i2.55232
Ezuruike UF, Prieto JM (2014) The use of plants in the traditional management of diabetes in Nigeria: pharmacological and toxicological considerations. J Ethnopharmacol 155(2):857–924. https://doi.org/10.1016/j.jep.2014.05.055
Farsetti A, Illi B, Gaetano C (2023) How epigenetics impacts on human diseases. Eur J Intern Med 114:15–22. https://doi.org/10.1016/j.ejim.2023.05.036
Firdous SM (2014) Phytochemicals for treatment of diabetes. EXCLI J 13:451–453
Fu Z, Gilbert ER, Liu D (2013) Regulation of insulin synthesis and secretion and pancreatic beta-cell dysfunction in diabetes. Curr Diabetes Rev 9(1):25–53
Füllgrabe J, Kavanagh E, Joseph B (2011) Histone onco-modifications. Oncogene 30(31):3391–3403. https://doi.org/10.1038/onc.2011.121
Gandhi J, Dagur G, Warren K, Smith NL, Khan SA (2017) Genitourinary complications of diabetes mellitus: an overview of pathogenesis, evaluation, and management. Curr Diabetes Rev. https://doi.org/10.2174/1573399812666161019162747
Ghorbani Z, Hekmatdoost A, Mirmiran P (2014) Anti-hyperglycemic and insulin sensitizer effects of turmeric and its principle constituent curcumin. Int J Endocrinol Metab. https://doi.org/10.5812/ijem.18081
Hardeland R (2014) Melatonin, noncoding RNAs, messenger RNA stability and epigenetics—evidence, hints, gaps and perspectives. Int J Mol Sci 15(10):18221–18252. https://doi.org/10.3390/ijms151018221
Hu Y-H, Chen Q, Lu Y-X, Zhang J-M, Lin C, Zhang F, Zhang W-J, Li X-M, Zhang W, Li X-N (2017) Hypermethylation of NDN promotes cell proliferation by activating the Wnt signaling pathway in colorectal cancer. Oncotarget 8(28):46191–46203. https://doi.org/10.18632/oncotarget.17580
Jung HS (2015) Clinical implications of glucose variability: chronic complications of diabetes. Endocrinol Metab 30(2):167. https://doi.org/10.3803/EnM.2015.30.2.167
Kala R, Shah HN, Martin SL, Tollefsbol TO (2015) Epigenetic-based combinatorial resveratrol and pterostilbene alters DNA damage response by affecting SIRT1 and DNMT enzyme expression, including SIRT1-dependent γ-H2AX and telomerase regulation in triple-negative breast cancer. BMC Cancer 15(1):672. https://doi.org/10.1186/s12885-015-1693-z
Katiyar SK, Singh T, Prasad R, Sun Q, Vaid M (2012) Epigenetic alterations in ultraviolet radiation-induced skin carcinogenesis: interaction of bioactive dietary components on epigenetic targets. Photochem Photobiol 88(5):1066–1074. https://doi.org/10.1111/j.1751-1097.2011.01020.x
Kaufman-Szymczyk A, Majewski G, Lubecka-Pietruszewska K, Fabianowska-Majewska K (2015) The role of sulforaphane in epigenetic mechanisms, including interdependence between histone modification and DNA methylation. Int J Mol Sci 16(12):29732–29743. https://doi.org/10.3390/ijms161226195
Kedhari Sundaram M, Hussain A, Haque S, Raina R, Afroze N (2019) Quercetin modifies 5′CpG promoter methylation and reactivates various tumor suppressor genes by modulating epigenetic marks in human cervical cancer cells. J Cell Biochem 120(10):18357–18369. https://doi.org/10.1002/jcb.29147
Kiselev IS, Kulakova OG, Boyko AN, Favorova OO (2021) DNA methylation as an epigenetic mechanism in the development of multiple sclerosis. Acta Nat 13(2):45–57. https://doi.org/10.32607/actanaturae.11043
Kumar A, Nirmal P, Kumar M, Jose A, Tomer V, Oz E, Proestos C, Zeng M, Elobeid T, Sneha K, Oz F (2023) Major phytochemicals: recent advances in health benefits and extraction method. Molecules 28(2):887. https://doi.org/10.3390/molecules28020887
Lacagnina S (2020) The developmental origins of health and disease (DOHaD). Am J Lifestyle Med 14(1):47–50. https://doi.org/10.1177/1559827619879694
Lawrence M, Daujat S, Schneider R (2016) Lateral thinking: how histone modifications regulate gene expression. Trends Genet 32(1):42–56. https://doi.org/10.1016/j.tig.2015.10.007
Lee WJ, Shim J-Y, Zhu BT (2005) Mechanisms for the inhibition of DNA methyltransferases by tea catechins and bioflavonoids. Mol Pharmacol 68(4):1018–1030. https://doi.org/10.1124/mol.104.008367
Li S (2012) Implication of posttranslational histone modifications in nucleotide excision repair. Int J Mol Sci 13(10):12461–12486. https://doi.org/10.3390/ijms131012461
Li S, Chen M, Li Y, Tollefsbol TO (2019) Prenatal epigenetics diets play protective roles against environmental pollution. Clin Epigenetics 11(1):82. https://doi.org/10.1186/s13148-019-0659-4
Lu J, Getz G, Miska EA, Alvarez-Saavedra E, Lamb J, Peck D, Sweet-Cordero A, Ebert BL, Mak RH, Ferrando AA, Downing JR, Jacks T, Horvitz HR, Golub TR (2005) MicroRNA expression profiles classify human cancers. Nature 435(7043):834–838. https://doi.org/10.1038/nature03702
Majid S, Kikuno N, Nelles J, Noonan E, Tanaka Y, Kawamoto K, Hirata H, Li LC, Zhao H, Okino ST, Place RF, Pookot D, Dahiya R (2008) Genistein induces the p21WAF1/CIP1 and p16INK4a tumor suppressor genes in prostate cancer cells by epigenetic mechanisms involving active chromatin modification. Can Res 68(8):2736–2744. https://doi.org/10.1158/0008-5472.CAN-07-2290
Meeran SM, Patel SN, Tollefsbol TO (2010) Sulforaphane causes epigenetic repression of hTERT expression in human breast cancer cell lines. PLoS ONE 5(7):e11457. https://doi.org/10.1371/journal.pone.0011457
Meseure D, Drak Alsibai K, Nicolas A, Bieche I, Morillon A (2015) Long noncoding RNAs as new architects in cancer epigenetics, prognostic biomarkers, and potential therapeutic targets. Biomed Res Int 2015:1–14. https://doi.org/10.1155/2015/320214
Moore LD, Le T, Fan G (2013) DNA methylation and its basic function. Neuropsychopharmacology 38(1):23–38. https://doi.org/10.1038/npp.2012.112
Moskalev A, Aliper A, Smit-McBride Z, Buzdin A, Zhavoronkov A (2014) Genetics and epigenetics of aging and longevity. Cell Cycle 13(7):1063–1077. https://doi.org/10.4161/cc.28433
Mossman D, Scott RJ (2006) Epimutations, inheritance and causes of aberrant DNA methylation in cancer. Hered Cancer Clin Pract 4(2):75. https://doi.org/10.1186/1897-4287-4-2-75
Nauck MA, Quast DR, Wefers J, Pfeiffer AFH (2021) The evolving story of incretins (GIP and GLP-1) in metabolic and cardiovascular disease: a pathophysiological update. Diabetes Obes Metab 23(S3):5–29. https://doi.org/10.1111/dom.14496
Negri A, Naponelli V, Rizzi F, Bettuzzi S (2018) Molecular targets of epigallocatechin—gallate (EGCG): a special focus on signal transduction and cancer. Nutrients 10(12):1936. https://doi.org/10.3390/nu10121936
Nørgaard M, Haldrup C, Storebjerg T, Vestergaard E, Wild P, Høyer S, Borre M, Ørntoft T, Sørensen K (2017) Comprehensive evaluation of TFF3 promoter hypomethylation and molecular biomarker potential for prostate cancer diagnosis and prognosis. Int J Mol Sci 18(9):2017. https://doi.org/10.3390/ijms18092017
Okonkwo A, Mitra J, Johnson GS, Li L, Dashwood WM, Hegde ML, Yue C, Dashwood RH, Rajendran P (2018) Heterocyclic analogs of sulforaphane trigger DNA damage and impede DNA repair in colon cancer cells: interplay of HATs and HDACs. Mol Nutr Food Res. https://doi.org/10.1002/mnfr.201800228
Oppermann U (2013) Why is epigenetics important in understanding the pathogenesis of inflammatory musculoskeletal diseases? Arthritis Res Ther 15(2):209. https://doi.org/10.1186/ar4186
Painuli S, Semwal P, Cruz-Martins N, Bachheti RK (2021) Medicinal plants of Himalayan forests. In: Husen A, Bachheti RK, Bachheti A (eds) Non-timber forest products. Springer International Publishing, Cham, pp 175–212
Pan M, Lai C, Tsai M, Ho C (2014) Chemoprevention of nonalcoholic fatty liver disease by dietary natural compounds. Mol Nutr Food Res 58(1):147–171. https://doi.org/10.1002/mnfr.201300522
Pandey M, Shukla S, Gupta S (2010) Promoter demethylation and chromatin remodeling by green tea polyphenols leads to re-expression of GSTP1 in human prostate cancer cells. Int J Cancer 126(11):2520–2533. https://doi.org/10.1002/ijc.24988
Papatheodorou K, Banach M, Bekiari E, Rizzo M, Edmonds M (2018) Complications of diabetes 2017. J Diabetes Res 2018:1–4. https://doi.org/10.1155/2018/3086167
Park SY, Seo AN, Jung HY, Gwak JM, Jung N, Cho N-Y, Kang GH (2014) Alu and LINE-1 hypomethylation is associated with HER2 enriched subtype of breast cancer. PLoS ONE 9(6):e100429. https://doi.org/10.1371/journal.pone.0100429
Prakash K, Fournier D (2017) Histone code and higher-order chromatin folding: a hypothesis. Genomics Comput Biol 3(2):41. https://doi.org/10.18547/gcb.2017.vol3.iss2.e41
Prasad R, Groop L (2015) Genetics of type 2 diabetes—pitfalls and possibilities. Genes 6(1):87–123. https://doi.org/10.3390/genes6010087
Raman PG (2016) Environmental factors in causation of diabetes mellitus. In: Larramendy ML, Soloneski S (eds) Environmental health risk—hazardous factors to living species. InTech, London
Rezk NA, Mohamed RH, Alnemr AA, Harira M (2018) Promoter methylation of RASSF1A gene in Egyptian patients with ovarian cancer. Appl Biochem Biotechnol 185(1):153–162. https://doi.org/10.1007/s12010-017-2648-4
Roth GA, Mensah GA, Johnson CO, Addolorato G, Ammirati E, Baddour LM, Barengo NC, Beaton AZ, Benjamin EJ, Benziger CP, Bonny A, Brauer M, Brodmann M, Cahill TJ, Carapetis J, Catapano AL, Chugh SS, Cooper LT, Coresh J et al (2020) Global burden of cardiovascular diseases and risk factors, 1990–2019. J Am Coll Cardiol 76(25):2982–3021. https://doi.org/10.1016/j.jacc.2020.11.010
Salm S, Rutz J, van den Akker M, Blaheta RA, Bachmeier BE (2023) Current state of research on the clinical benefits of herbal medicines for non-life-threatening ailments. Front Pharmacol. https://doi.org/10.3389/fphar.2023.1234701
Sarkar S, Horn G, Moulton K, Oza A, Byler S, Kokolus S, Longacre M (2013) Cancer development, progression, and therapy: an epigenetic overview. Int J Mol Sci 14(10):21087–21113. https://doi.org/10.3390/ijms141021087
Shahwan M, Alhumaydhi F, Ashraf GMd, Hasan PMZ, Shamsi A (2022) Role of polyphenols in combating type 2 diabetes and insulin resistance. Int J Biol Macromol 206:567–579. https://doi.org/10.1016/j.ijbiomac.2022.03.004
Shams TA, Müller DJ (2014) Antipsychotic induced weight gain: genetics, epigenetics, and biomarkers reviewed. Curr Psychiatry Rep 16(10):473. https://doi.org/10.1007/s11920-014-0473-9
Shankar S, Kumar D, Srivastava RK (2013) Epigenetic modifications by dietary phytochemicals: implications for personalized nutrition. Pharmacol Ther 138(1):1–17. https://doi.org/10.1016/j.pharmthera.2012.11.002
Shanmugam MK, Arfuso F, Arumugam S, Chinnathambi A, Jinsong B, Warrier S, Wang LZ, Kumar AP, Ahn KS, Sethi G, Lakshmanan M (2018) Role of novel histone modifications in cancer. Oncotarget 9(13):11414–11426. https://doi.org/10.18632/oncotarget.23356
Sharifi-Rad J, Rayess Y. El, Rizk AA, Sadaka C, Zgheib R, Zam W, Sestito S, Rapposelli S, Neffe-Skocińska K, Zielińska D, Salehi B, Setzer WN, Dosoky NS, Taheri Y, El Beyrouthy M, Martorell M, Ostrander EA, Suleria HAR, Cho WC et al (2020) Turmeric and its major compound curcumin on health: bioactive effects and safety profiles for food, pharmaceutical, biotechnological and medicinal applications. Front Pharmacol. https://doi.org/10.3389/fphar.2020.01021
Shi Y, Zhang H, Huang S, Yin L, Wang F, Luo P, Huang H (2022) Epigenetic regulation in cardiovascular disease: mechanisms and advances in clinical trials. Signal Transduct Target Ther 7(1):200. https://doi.org/10.1038/s41392-022-01055-2
Singh BN, Shankar S, Srivastava RK (2011) Green tea catechin, epigallocatechin-3-gallate (EGCG): mechanisms, perspectives and clinical applications. Biochem Pharmacol 82(12):1807–1821. https://doi.org/10.1016/j.bcp.2011.07.093
Smith BC, Denu JM (2009) Chemical mechanisms of histone lysine and arginine modifications. Biochim Biophys Acta (BBA) Gene Regul Mech 1789(1):45–57. https://doi.org/10.1016/j.bbagrm.2008.06.005
Suba V, Murugesan T, Arunachalam G, Mandal SC, Saha BP (2004) Anti-diabetic potential of Barleria lupulina extract in rats. Phytomedicine 11(2–3):202–205. https://doi.org/10.1078/0944-7113-00316
Surai P (2015) Silymarin as a natural antioxidant: an overview of the current evidence and perspectives. Antioxidants 4(1):204–247. https://doi.org/10.3390/antiox4010204
Tag H, Kalita P, Dwivedi P, Das AK, Namsa ND (2012) Herbal medicines used in the treatment of diabetes mellitus in Arunachal Himalaya, northeast, India. J Ethnopharmacol 141(3):786–795. https://doi.org/10.1016/j.jep.2012.03.007
Tan S, Wang C, Lu C, Zhao B, Cui Y, Shi X, Ma X (2009) Quercetin is able to demethylate the p16INK4a gene promoter. Chemotherapy 55(1):6–10. https://doi.org/10.1159/000166383
Thakur VS, Deb G, Babcook MA, Gupta S (2014) Plant phytochemicals as epigenetic modulators: role in cancer chemoprevention. AAPS J 16(1):151–163. https://doi.org/10.1208/s12248-013-9548-5
Tian F-M, Zhong C-Y, Wang X-N, Meng Y (2017) PDE3A is hypermethylated in cisplatin resistant non-small cell lung cancer cells and is a modulator of chemotherapy response. Eur Rev Med Pharmacol Sci 21(11):2635–2641
Tili E, Michaille J-J, Alder H, Volinia S, Delmas D, Latruffe N, Croce CM (2010) Resveratrol modulates the levels of microRNAs targeting genes encoding tumor-suppressors and effectors of TGFβ signaling pathway in SW480 cells. Biochem Pharmacol 80(12):2057–2065. https://doi.org/10.1016/j.bcp.2010.07.003
Tollefsbol TO (2014) Dietary epigenetics in cancer and aging. In: Zappia V, Panico S, Russo GL, Budillon A, Ragione FD (eds) Advances in nutrition and cancer. Springer, Berlin, pp 257–267
Ullah H, Khan H (2020) Epigenetic drug development for autoimmune and inflammatory diseases. Histone modifications in therapy. Elsevier, Amsterdam, pp 395–413
Umpierrez G, Korytkowski M (2016) Diabetic emergencies—ketoacidosis, hyperglycaemic hyperosmolar state and hypoglycaemia. Nat Rev Endocrinol 12(4):222–232. https://doi.org/10.1038/nrendo.2016.15
Wang R-H, Zheng Y, Kim H-S, Xu X, Cao L, Lahusen T, Lee M-H, Xiao C, Vassilopoulos A, Chen W, Gardner K, Man Y-G, Hung M-C, Finkel T, Deng C-X (2008) Interplay among BRCA1, SIRT1, and survivin during BRCA1-associated tumorigenesis. Mol Cell 32(1):11–20. https://doi.org/10.1016/j.molcel.2008.09.011
Weber B, Stresemann C, Brueckner B, Lyko F (2007) Methylation of human microRNA genes in normal and neoplastic cells. Cell Cycle 6(9):1001–1005. https://doi.org/10.4161/cc.6.9.4209
Xie Q, Bai Q, Zou L, Zhang Q, Zhou Y, Chang H, Yi L, Zhu J, Mi M (2014) Genistein inhibits DNA methylation and increases expression of tumor suppressor genes in human breast cancer cells. Genes Chromosom Cancer 53(5):422–431. https://doi.org/10.1002/gcc.22154
Xie W, Su F, Wang G, Peng Z, Xu Y, Zhang Y, Xu N, Hou K, Hu Z, Chen Y, Chen R (2022) Glucose-lowering effect of berberine on type 2 diabetes: a systematic review and meta-analysis. Front Pharmacol. https://doi.org/10.3389/fphar.2022.1015045
Yao Q, Chen Y, Zhou X (2019) The roles of microRNAs in epigenetic regulation. Curr Opin Chem Biol 51:11–17. https://doi.org/10.1016/j.cbpa.2019.01.024
Zhang W, Barger CJ, Link PA, Mhawech-Fauceglia P, Miller A, Akers SN, Odunsi K, Karpf AR (2015) DNA hypomethylation-mediated activation of cancer/testis antigen 45 (CT45) genes is associated with disease progression and reduced survival in epithelial ovarian cancer. Epigenetics 10(8):736–748. https://doi.org/10.1080/15592294.2015.1062206
Zimmet P, Shaw J (2017) Rising incidence of diabetes mellitus in youth in the USA. Nat Rev Endocrinol 13(7):379–380. https://doi.org/10.1038/nrendo.2017.59
University Institute of Biotechnology, Chandigarh University, Mohali, India