In-vitro antagonistic activity of Trichoderma spp. isolated from forest soils of central India against Macrophomina phaseolina for identification of potential strain


Research Articles | Published:

DOI: 10.1007/s42535-024-00947-8
First Page: 1643
Last Page: 1649
Views: 2033

Keywords: n Macrophomina phaseolinan , n Trichoderman , Antagonist, Biocontrol agent


Abstract


The present study was undertaken to find out the antagonist potential of six different Trichoderma spp. isolated from forest soils of central India against M. phaseolina under in-vitro conditions. The results revealed that all Trichoderma isolates are fast-growing and showed considerable reduction in the growth of M. phaseolina. One of the isolates Trichoderma hunua (Isolate number: TD16) showed the maximum inhibition (80.38%) and mycoparasitism against M. phaseolina. T. hunua is investigated first time for its antagonistic potential and due to its excellent inhibition potential, it can be used as a promising multifunctional bio-fertilizer and bio-stimulant in the future.

n                     Macrophomina phaseolinan                  , n                     Trichoderman                  , Antagonist, Biocontrol agent


References


Aly AA, Abdel-Sattar MA, Omar MR, Abd-Elsalam KA (2007) Differential antagonism of Trichoderma sp. against Macrophomina Phaseolina. J Plant Prot Res 47(2)





Cherkupally R, Amballa H, Reddy BN (2016) In vitro antagonistic activity of Trichoderma and Penicillium species against Macrophomina phaseolina (Tassi) Goid. Ann Biol Res 7(9):34–38


Coser SM, Chowda Reddy RV, Zhang J, Mueller DS, Mengistu A, Wise KA, Allen TW, Singh A, Singh AK (2017) Genetic architecture of charcoal rot (Macrophomina phaseolina) resistance in soybean revealed using a diverse panel. Front Plant Sci 8:1626


Druzhinina IS, Seidl-Seiboth V, Herrera-Estrella A, Horwitz BA, Kenerley CM, Monte E, Mukherjee PK, Zeilinger S, Grigoriev IV, Kubicek CP (2011) Trichoderma: the genomics of opportunistic success. Nat Rev Microbiol 9(10):749–759


Ganeshamoorthi P, Anand T, Saravanan A, Prakasam V, Chandramohan N, Ragupathi N (2010) Cultural and genetic variability in Macrophomina phaseolina (Tassi.) Goid. And incidence of mulberry root rot. Arch Phytopathol Plant Prot 43(2):123–132


Gupta GK, Sharma SK, Ramteke R (2012) Biology, epidemiology and management of the pathogenic fungus Macrophomina phaseolina (Tassi) Goid with special reference to charcoal rot of soybean (Glycine max (L.) Merrill). J Phytopathol 160(4):167–180


Haran S, Schickler H, Chet I (1996) Molecular mechanisms of lytic enzymes involved in the biocontrol activity of Trichoderma harzianum. Microbio142(9):2321-31


Harman GE (2000) Trichoderma spp., including T. harzianum, T. viride, T. koningii, T. hamatum and other spp. Deuteromycetes, Monilialea (asexual classification system). Biological control: A guide to Natural Enemies in North America


Hermosa MR, Grondona I, Iturriaga ET, Diaz-Minguez JM, Castro C, Monte E, Garcia-Acha IJ (2000) Molecular characterization and identification of biocontrol isolates of Trichoderma spp. Appl Environ Microbiol 66(5):1890–1898


Khalili E, Javed MA, Huyop F, Rayatpanah S, Jamshidi S, Wahab RA (2016) Evaluation of Trichoderma isolates as potential biological control agent against soybean charcoal rot disease caused by Macrophomina Phaseolina. Biotechnol Biotechnol Equip 30(3):479–488


Larralde-Corona CP, Santiago-Mena MR, Sifuentes-Rincon AM, Rodríguez-Luna IC, Rodriguez-Perez MA, Shirai K, Narvaez-Zapata JA (2008) Biocontrol potential and polyphasic characterization of novel native Trichoderma strains against Macrophomina phaseolina isolated from sorghum and common bean. Appl Microbiol Biotechnol 80:167–177


Marquez N, Giachero ML, Declerck S, Ducasse DA (2021) Macrophomina phaseolina: general characteristics of pathogenicity and methods of control. Front Plant Sci 12:634397


McIntyre M, Nielsen J, Arnau J, Brink VH, Hansen K (2004) Proceedings of the 7th European Conference on Fungal Genetics. Copenhagen, Denmark


Monaco C, Pasquaré AO, Alippi HE, Perello A (1991) Trichoderma spp.: a biocontrol agent of Fusarium spp. and Sclerotium rolfsii by seed treatment. Trichoderma spp., 1000–1004


Morton DT, Stroube NH (1955) Antagonistic and stimulatory effect of microorganism upon Sclerotium Rolfsii. Phytopathol 45:419–420


Mukherjee PK, Buensanteai N, Moran-Diez ME, Druzhinina IS, Kenerley CM (2012) Functional analysis of non-ribosomal peptide synthetases (NRPSs) in Trichoderma virens reveals a polyketide synthase (PKS)/NRPS hybrid enzyme involved in the induced systemic resistance response in maize. Microbiol 158(1):155–165


Mukherjee S, Tripathi HS (2000) Biological and chemical control of wilt complex of French bean. J Myco Plant Pathol 30(3):380–385


Mukhopadhyay R, Kumar D (2020) Trichoderma: a beneficial antifungal agent and insights into its mechanism of biocontrol potential. Egypt J Bìol Pest Control 30(1):1–8


Mukhopadhyay R, Pan SK (2012) Isolation and selection of some antagonistic Trichoderma species from different new alluvial zones of Nadia district, West Bengal. J Bot Soc Bengal 66(2):149–152


Parmar RG (2020) Efficacy of bioagents against Macrophomina phaseolina causing root rot of soybean in vitro. J Pharmacogn Phytochem 9(6S):196–198


Ramezani H (2008) Biological control of root-rot of eggplant caused by Macrophomina Phaseolina. Am Eurasian J Agric Environ Sci Dubai 4:218–220


Rayatpanah S, Nanagulyan SG, Alavi SV, Razavi M, Ghanbari-Malidarreh A (2012) Pathogenic and genetic diversity among Iranian isolates of Macrophomina Phaseolina. Chil J Agric Res 72(1):40


Sarr MP, Groenewald JZ, Crous PW (2014) Genetic diversity in Macrophomina phaseolina, the causal agent of charcoal rot. Phytopathol. Mediterr 1;53(2):250


Spiegel Y, Chet I (1998) Evaluation of Trichoderma spp. as a biocontrol agent against soilborne fungi and plant-parasitic nematodes in Israel. Integr Pest Manag Rev 3:169–175


Tamura K, Stecher G, Kumar S (2021) MEGA 11: Molecular Evolutionary Genetics Analysis Version 11. Mol Biol Evol 38(7):3022–3027. https://doi.org/10.1093/molbev/msab120


Tamura K, Nei M (1993) Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol 10:512–526


Vey A, Hoagland RE, Butt TM (2001) 12 Toxic Metabolites of Fungal Biocontrol Agents. Fungi as biocontrol agents 311


White TJ, Bruns S, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. PCR Protocols: Guide Methods Appl 1(1):315–322


Yao X, Guo H, Zhang K, Zhao M, Ruan J, Chen J (2023) Trichoderma and its role in biological control of plant fungal and nematode disease. Front Microbiol 14:1160551


Raja HA, Miller AN, Pearce CJ, Oberlies NH (2017) Fungal identification using molecular tools: a primer for the natural products research community. J Nat Prod 80(3):756–70


Gams W, Bissett J (1998) Morphology and identification of Trichoderma. Trichoderma and Gliocladium. Taylor and Francis, London, 1: 3–31


Gajera H, Domadiya R, Patel S, Kapopara M, Golakiya B (2013) Molecular mechanism of Trichoderma as bio-control agents against phytopathogen system–a review. Curr Res Microbiol Biotechnol 1:133–142


Doley K, Jite PK (2012) In-Vitro efficacy of Trichoderma viride against Sclerotium rolfsii and Macrophomina phaseolina. Not Sci Biol 4(4):39–44


Khan IH & Javaid A (2020) In vitro biocontrol potential of Trichoderma pseudokoningii against Macrophomina phaseolina. Intl J Agric Biol 24(4):730–736

 


Author Information


Department of Environmental Science, ITM University Gwalior, Gwalior, India