In vitro morphological characterization of salt tolerance in five bread wheat varieties

*Article not assigned to an issue yet

, , , , ,


Research Articles | Published:

E-ISSN: 2229-4473.
Website: www.vegetosindia.org
Pub Email: contact@vegetosindia.org
DOI: 10.1007/s42535-025-01411-x
First Page: 0
Last Page: 0
Views: 1

Keywords: Callus, Embryogenic callus, Plant regeneration, Salt tolerance, Salinity


Abstract


The present study aims to evaluate in vitro the detrimental effects of salt stress on callus induction and plant regeneration of bread wheat (Triticum aestivum L.) varieties. Endosperm-supported mature embryos were cultivated as explants to identify the most salt-tolerant variety. An acute short-term treatment was applied, where calli were directly induced on media containing 2 mg/L 2, 4-D supplemented with four salinity levels (3, 6, 9, and 12 g/L NaCl). After three weeks, all calli from each variety produced on all media were shifted to proliferation media for one week before being transferred to regeneration medium with the same salt levels. Salinity had a statistically significant effect on all parameters evaluated. At 6 and 9 g/L NaCl, the optimal percentages of regeneration were obtained by Rajae (64 and 48%) compared to other varieties. The 12 g/L NaCl level, on the other hand, was found to be intolerable for all varieties examined. The impact of salinity was also further demonstrated by a decrease in root length of regenerated plantlets with increasing salt concentration (especially at 6 and 9 g/L NaCl). Statistical analysis revealed that the varieties Rajae and Wafia were the most tolerant to salt, followed by Nassim, while the varieties Wissam and Tigre were the most sensitive.

Callus, Embryogenic callus, Plant regeneration, Salt tolerance, Salinity


References


Acevedo M, Zurn JD, Molero G, Singh P, He X, Aoun M, Philomin J, Bockleman H, Bonman M, El-Sohl M, Amri A, Coffman R, McCandless L (2018) In Routledge book: Agricultural development and sustainable intensification: technology and policy challenges in the face of climate change. pp. 81–110). https://doi.org/10.4324/9780203733301-4


Aggarwal G, Edhigalla P, Walia P, Jindal S, Sandal SS (2024) A method for screening salt stress tolerance in Indian mustard (Brassica juncea) (L.) Czern & Coss at seedling stage. Sci Rep 14(1):12705. https://doi.org/10.1038/s41598-024-63693-6


Ahmad R, Hussain S, Anjum MA, Khalid MF, Saqib M, Zakir I, Hassan A, Fahad S, Ahmad S (2019) Oxidative stress and antioxidant defense mechanisms in plants under salt stress. In: Hasanuzzaman M, Hakeem K, Nahar K, Alharby H (eds) Plant abiotic stress tolerance. pp 191–205 Springer, Cham


Al-Khateeb SA, Al-Khateeb AA, Sattar MN, Mohmand AS (2020) Induced in vitro adaptation for salt tolerance in date palm (Phoenix dactylifera L.) cultivar Khalas. Biol Res 53:37


Arab MM, Yadollahi A, Eftekhari M et al (2018) Modeling and optimizing a new culture medium for in vitro rooting of g×n15 prunus rootstock using artificial neural network-genetic algorithm. Sci Rep 8:9977. https://doi.org/10.1038/s41598-018-27858-4


Arzani A, Ashraf M (2016) Smart engineering of genetic resources for enhanced salinity tolerance in crop plants. Crit Rev Plant Sci 35:146–189. https://doi.org/10.1080/07352689.2016.1245056


Baklouti E, Beulé T, Nasri A, Ben Romdhane A, Drira R, Doulbeau S, Rival A, Drira N, Fki L (2022) 2,4-D induction of Somaclonal variations in in vitro grown date palm (Phoenix dactylifera L. cv Barhee). Plant Cell Tiss Organ Cult 150:191–205. https://doi.org/10.1007/s11240-022-02259-8


Benderradji L, Brini F, Kellou K, Ykhlef N, Djekoun A, Masmoudi K, Bouzerzour H (2011) Callus Induction, Proliferation, and Plantlets Regeneration of Two Bread Wheat (Triticum aestivumL.) Genotypes under Saline and Heat Stress Conditions. ISRN Agronomy, 2012, 1–8. https://doi.org/10.5402/2012/367851


Benderradji L (2013) Sélection in vitro pour la tolérance aux stresse salin et thermique chez le blé tendre (Triticum aestivum): Thèse de doctorat, Université Constantine


Bezirğanoğlu I (2017) Response of five triticale genotypes to salt stress in in vitro culture. Turk J Agric For (2017) 41, 372–380


Birhanie ZM, Yang D, Luan M, Xiao A, Liu L, Zhang C, Biswas A, Dey S, Deng Y, Li D (2022) Salt stress induces changes in physiological characteristics, bioactive constituents, and antioxidants in kenaf (Hibiscus cannabinus L.). Antioxidants, 11, 2005. https://doi.org/10.3390/antiox11102005


Bishaw Z, Yigezu YA, Niane A, Telleria RJ, Najjar D (eds) (2019) Political economy of the wheat sector in morocco: seed systems, varietal adoption, and impacts. International Center for Agricultural Research in the Dry Areas, Beirut, Lebanon, p 300


Chaurasia S, N S, Kumar A, Ajay K, Singh (2022) Comprehensive evaluation of Morpho-Physiological and ionic traits in wheat (Triticum aestivum L.) genotypes under salinity stress. Agriculture 12(11):1765–1765. https://doi.org/10.3390/agriculture12111765


Dehnavi AR, Zahedi M, Piernik A (2024) Understanding salinity stress responses in sorghum: exploring genotype variability and salt tolerance mechanisms. Front Plant Sci 14. https://doi.org/10.3389/fpls.2023.1296286


Dogan M (2020) Effect of salt stress on in vitro organogenesis from nodal explant of Limnophila aromatica (Lamk.) merr. And Bacopa monnieri (L.) wettst. And their physio-morphological And biochemical responses. Physiol Mol Biology Plants: Int J Funct Plant Biology 26(4):803–816. https://doi.org/10.1007/s12298-020-00798-y


Sabagh EL, Islam A, Skalicky MS, Ali Raza M, Singh M, Anwar Hossain K, Hossain M, Mahboob A, Iqbal W, Ratnasekera MA, Singhal D, Ahmed RK, Kumari S, Wasaya A, Sytar A, Brestic O, Erman MÇIGF, Ullah M, Arshad N, A (2021a) Salinity stress in wheat (Triticum aestivum L.) in the changing climate: adaptation and management strategies. Front Agron 3. https://doi.org/10.3389/fagro.2021.661932


El-Hendawy SE, Ruan Y, Hu Y, Schmidhalter U (2009) A comparison of screening criteria for salt tolerance in wheat under field and controlled environmental conditions. J. Agron. Crop Sci. 2009; 195:356–367. https://doi.org/10.1111/j.1439-037X.2009.00372.x


Elmaghrabi AM, Ochatt S, Rogers HJ, Francis D (2013) Enhanced tolerance to salinity following cellular acclimation to increasing NaCl levels in Medicago truncatula. Plant Cell Tiss Organ Cult 114:61–70


Elmaghrabi AM, Dennis F, Rogers HJ, Ochatt SJ (2019) Nuclear migration: an indicator of plant salinity tolerance in vitro. Front Plant Sci 10:783


Erenstein O, Jaleta M, Mottaleb KA, Sonder K, Donovan J, Braun HJ (2022) Global trends in wheat production, consumption and trade. In: Reynolds MP, Braun H (eds) Wheat improvement. Springer, Cham. https://doi.org/10.1007/978-3-030-90673-3_4


Mouhssine F, Ech-Cheddadi S, Ouhaddach M, Goumi YE, El yacoubi H, Rochdi A (2021) Selection of tolerant wheat varieties during the germination phase. J Microbiol Biotechnol Food Sci 10(5):e2341. https://doi.org/10.15414/jmbfs.2341


Golkar P, Amooshahi F, Arzani A (2017) The effects of salt stress on physio-biochemical traits, total phenolic and mucilage content of Plantago ovata Forsk under in vitro conditions. J Appl Bot Food Qual 90:224–231


Granja MMC, Medeiros MJL, Silva MMA, Camara TR, Willadino L, Ulisses C (2018) Response to in vitro salt stress in sugarcane is conditioned by concentration and condition of exposure to NaCl. Acta Boil Colomb 23:30–38


Gupta B, Huang B. Mechanism of salinity tolerance in plants: physiological, biochemical, and molecular characterization. Int J Genomics. 2014;2014:701596. doi: 10.1155/2014/701596. Epub 2014 Apr 3. PMID: 24804192; PMCID: PMC3996477.Gupta B, Huang B (2014) Mechanism of salinity tolerance in plants: physiological, biochemical, and molecular characterization. Int J Genom 701596


Hannachi S, Werbrouck S, Bahrini I, Abdelgadir A, Siddiqui HA, Van Labeke MC (2021) Obtaining salt stress-tolerant eggplant Somaclonal variants from in vitro selection. Plants 10:2539. https://doi.org/10.3390/plants10112539


Haque M, Shainul Islam SM, Subramaniam S (2017) Effects of salt and heat pre-treatment factors on efficient regeneration in barley (Hordeum vulgare L). 3 Biotech 7:63


Htwe NN, Maziah M, Ling HC, Zaman FQ, Zain AM (2011) Responses of some selected Malaysian rice genotypes to callus induction under in vitro salt stress. Afr J Biotechnol 10:350–362


Jha S, Singh J, Chouhan C, Singh O, Srivastava RK (2021) Evaluation of multiple salinity tolerance indices for screening and comparative biochemical and molecular analysis of Pearl millet [Pennisetum glaucum (L.) R. Br.] Genotypes. J Plant Growth Regul 41(4):1820–1834. https://doi.org/10.1007/s00344-021-10424-0





Khan MM, Rahman MM, Hasan MM, Amin MF, Matin MQI, Faruq GG, Alkidris LM, Gaber A, Hossain A (2024) Assessment of the salt tolerance of diverse bread wheat (Triticum aestivum L.) genotypes during the early growth stage under hydroponic culture conditions. Heliyon 10(7):e29042. https://doi.org/10.1016/j.heliyon.2024.e29042


Kizilgeci F, Yildirim M, Islam MS, Ratnasekera D, Iqbal MA, Sabagh AE (2021) Normalized difference vegetation index and chlorophyll content for precision nitrogen management in durum wheat cultivars under semi-arid conditions. Sustainability 13(7):3725. https://doi.org/10.3390/su13073725


Klay I, Riahi L, Amara HS, Daaloul A (2024) Variation in callus growth and in vitro regeneration among cultivated and wild wheat genotypes under increasing salt stress conditions. J Anim Plant Sci 34(4):1020–1030. https://doi.org/10.36899/japs.2024.4.0784


Koutoua A, Mouhssine F, Elyacoubi H, Rochdi (2020) In vitro regeneration from immature embryos Calliof durum wheat under salinity stress conditions. Res J Biotechnol 15(9):113–119


Ma Y, Zhang Y, Xu J, Qi J, Liu X, Guo L, Zhang H (2024) Research on the mechanisms of phytohormone signaling in regulating root development. Plants (Basel Switzerland) 13(21):3051. https://doi.org/10.3390/plants13213051


Mbarki S, Skalicky M, Vachova P, Hajihashemi S, Jouini L, Zivcak M, Tlustos P, Brestic M, Hejnak V, Khelil AZ (2020) Comparing salt tolerance at seedling and germination stages in local populations of Medicago ciliaris L. to Medicago intertexta L. and Medicago scutellata L. Plants (Basel. Switzerland) 9(4):526. https://doi.org/10.3390/plants9040526


Messai A, Hannachi C, Zid E (2004) In vitro regeneration of tomato (Lycopersicon esculentum) adapted to NaCl. Tropicultura 24:221–228


Metwali EMR, Fuller MP, Gowayed SMH, Almaghrabi OA, Mosleh YY (2013) Evaluation and selection of barley genotypes under optimum salt stress condition using tissue culture techniques and SDS-PAGE gel electrophoresis. J Food Agric Environ 11:1386–1394


Mouhssine F, El Yacoubi H, Goumi E, Rochdi Y, A (2023) Efficient callogenesis and plant regeneration in bread wheat (Triticum aestivum L.) varieties. Acta Fytotechnica Et Zootechnica/Acta Fytotechnica Et Zootechnica 26(3):273–284. https://doi.org/10.15414/afz.2023.26.03.273-284


Nawaz S, Ahmed N, Iqbal A, Khaliq I (2013) Optimization of regeneration protocols for wheat under drought and salt stress. Pakistan J Agric Sci, 50(4)Pak. J. Agri. Sci., Vol. 50(4), 663-670; 2013ISSN (Print) 0552-9034, ISSN (Online) 2076-0906http://www.pakjas.com.p


Nwe NH, Mahmood M, Ho CL, Faridah QZ, Abdullah MZ (2011) Responses of some selected Malaysian rice genotypes to callus induction under in vitro salt stress. Afr J Biotech 10:350–362


Oudija F, Ismaili M, Amsa M (2002) Effet de La concentration En NaCl Sur l’embryogenèse somatique et Sur Les capacités de régénération Chez Le blé. Afr Crop Sci J 10:211–219


Oyiga BC, Sharma RC, Shen J, Baum M, Ogbonnaya FC, Léon J, Ballvora A (2016) Identification and characterization of salt tolerance of wheat germplasm using a multivariable screening approach. J Agron Crop Sci 202:472–485


Pasam RK, Kant S, Thoday-Kennedy E, Dimech A, Joshi S, Keeble-Gagnere G, Forrest K, Tibbits J, Hayden M (2023) Haplotype-based genome-wide association analysis using exome capture assay and digital phenotyping identifies genetic loci underlying salt tolerance mechanisms in wheat. Plants 12(12):2367. https://doi.org/10.3390/plants12122367


Pérez-Clemente, Ma R, Gomez-Cadenas A (2012) In vitro tissue culture, a tool for the study and breeding of plants subjected to abiotic stress conditions. Recent advances in plant in vitro culture. https://doi.org/10.5772/50671


Puhan P, Siddiq EA (2013) Protocol optimization and evaluation of rice varieties response to in vitro regeneration. Adv Biosci Biotechnol 4:647–653


Rattana K, Bunnag S (2015) Differential salinity tolerance in calli and shoots of four rice cultivars. Asian J Crop Sci 7:48–60


Sabagh AE, Islam MS, Skalicky M, Raza MA, Singh K, Hossain MA, Houssain A, Mahboob W, Iqbal MA, Ratensekera D, Arshad A (2021b) Salinity stress in wheat (Triticum aestivum L.) in the changing climate: adaptation and management strategies. Front Agron 3. https://doi.org/10.3389/fagro.2021.661932


Sable AD, Kardile PB, Sable AD, Kharde AV (2018) Studies on effect of different concentration of naci on bacoside production from brahmi (Bacopa monnieri) under in vitro condition. J Pharmacogn Phytochem 7:1386–1389


Shelar PV, Mankar GD, Sontakke OP, Wayase UR, Bhosale KS, Nikalje GC, Ahire ML, Nikam TD, Barmukh R (2024) B. A review on Physio-Biochemical and molecular mechanisms of salt tolerance in crops. Curr Agri Res 12(2). https://doi.org/10.12944/CARJ.12.2.05


Shrivastava P, Kumar R (2015) Soil salinity: A serious environmental issue and plant growth promoting bacteria as one of the tools for its alleviation. Saudi J Biol Sci 22:123–131


Slama F (1982) Effet du chlorure de sodium sur la croissance et la nutrition minérale: Étude comparative de six espèces cultivées, thèse, faculté des sciences de Tunis, université Tunis-2, 214 p


Soheilikhah Z, Karimi N, Ghasmpour HR, Zebarjadi AR (2013) Effects of saline and mannitol induced stress on some biochemical and physiological parameters of Carthamus tinctorius L. varieties callus cultures. Aust J Crop Sci 7:1866–1874


Ulukan H (2024) Wheat production trends and research priorities: a global perspective. In: Zencirci N, Altay F, Baloch FS, Nadeem MA, Ludidi N (eds) Advances in wheat breeding. Springer, Singapore. https://doi.org/10.1007/978-981-99-9478-6_1)


Wani SH, Sofi PA, Gosal SS, Singh NB (2010) In vitro screening of rice(Oryza sativa L) callus for drought tolerance. Commun Biometry Crop Sci 5(2):108–115





Zair I, Chlyah A, Sabounji K et al (2003) Salt tolerance improvement in some wheat cultivars after application of in vitro selection pressure. Planr Cell Tissue Organ Cult 73:237–244. https://doi.org/10.1023/A:1023014328638


Zhang C, Meng W, Wang Y, Zhou Y, Wang S, Qi F, Wang N, Ma J (2022) Comparative analysis of physiological, hormonal and transcriptomic responses reveal mechanisms of saline-alkali tolerance in autotetraploid rice (oryza sativa l). Int J Mol Sci 23(24):16146. https://doi.org/10.3390/ijms232416146


Zhang Z, Xia Z, Zhou C, Wang G, Meng X, Yin P (2024) Insights into salinity tolerance in wheat. Genes 15(5):573. https://doi.org/10.3390/genes15050573


Zhao DY, Gao S, Zhang XL, Zhang ZW, Zheng HQ, Rong K, Zhao WF, Khan SA (2021) Impact of saline stress on the uptake of various macro and micronutrients and their associations with plant biomass and root traits in wheat. Plant Soil Environ 67:61–70. https://doi.org/10.17221/467/2020-PSE


Zhou H, Shi H, Yang Y, Feng X, Chen X, Xiao F, Guo Y (2024a) Insights into plant salt stress signaling and tolerance. J Genet Genomics/Journal Genet Genomics 51(1):16–34. https://doi.org/10.1016/j.jgg.2023.08.007


Zhou Y, Feng C, Wang Y, Yun C, Zou X, Cheng N, Zhang W, Jing Y, Li H (2024b) Understanding of plant salt tolerance mechanisms and application to molecular breeding. Int J Mol Sci 25(20):10940. https://doi.org/10.3390/ijms252010940







 


Author Information


Laboratory of Natural Resources and Sustainable Development, Department of Life Sciences, Faculty of Sciences, Ibn Tofail University, Kénitra, Morocco