In vitro regeneration competency of Crataeva nurvala (Buch Ham) callus

Research Articles | Published:

Print ISSN : 0970-4078.
Online ISSN : 2229-4473.
Pub Email:
Doi: 10.1007/s42535-019-00080-x
First Page: 52
Last Page: 62
Views: 1992

Keywords: Explants, Organogenesis, Somatic embryogenesis, Thidiazuron


Crataeva nurvala (Buch Ham) is a medicinally important tree. The root and stem bark of the tree are the main ingredients of various pharmaceutical products. The use of natural propagation strategies for C. nurvala has proven difficult. In this study, callus cultures were established from leaflets, petal, petiole, internodes and nodes on Murashige and Skoog’s (MS) medium supplemented with 2 mg L−1 of 2,4-dichlorophenoxyacetic acid and 0.4 mg L−1 kinetin. Transfer of calli on MS supplemented with 0.1-0.5 mg L−1 of kinetin, N6-benzyl adenine, or thidiazuron or N6-(2-isopentenyl) adenine resulted in root and shoot bud differentiation and somatic embryogenesis. In vitro regenerated shoots were successfully rooted on half-strength MS medium containing 0.5 mg L−1 α- naphthalene acetic acid. Somatic embryos continued their differentiation and maturation and converted into plantlets on medium without plant growth regulators. The regeneration response, the type of morphogenesis, varied with callus source and plant growth regulators. Micropropagated plantlets of C. nurvala successfully acclimatized in natural condition.

*Get Access

(*Only SPR Members can get full access. Click Here to Apply and get access)



  1. Agarwal K, Varma R (2015) Ethnobotanical study of antilithic plants of Bhopal district. J Ethnopharmacol 174:17–24.

  2. Aziz AF, Yusuf NA, Tan BC, Khalid N (2017) Prolonged culture of Boesenbergia rotunda cells reveals decreased growth and shoot regeneration capacity. Plant Cell Tissue Organ Cult 130:25–36.

  3. Babbar SB, Walia N, Kaur A (2009) Large-scale in vitro multiplication of Crataeva nurvala. In: Jain SM, Saxena PK (eds) Protocols for in vitro cultures and secondary metabolite analysis of aromatic and medicinal plants. Methods in molecular biology (methods and protocols), vol 547. Humana Press, Totowa, NJ, pp 61–70.

  4. Barata AM, Rocha F, Lopes V, Carvalho AM (2016) Conservation and sustainable uses of medicinal and aromatic plants genetic resources on the worldwide for human welfare. Ind Crops Prod 88:8–11.

  5. Basu MJ, Ramanathan R, Yogananth N, Baburaj S (2009) Micropropagation of Crataeva religiosa Hook.f. & Thoms. Curr Trendzs Biotechnol Pharm 3:287–290

  6. Bhandari P, Dhar M, Sharma V (1951) Chemical constituents of the root bark of Crataeva nurvala Ham. J Sci Ind Res 10:195–196

  7. Bhattacharjee S (2012) The language of reactive oxygen species signaling in plants. J Bot 2012:1–22.

  8. Bhattacharjee A, Shashidhara SC, Aswathanarayana (2012) Phytochemical and ethno-pharmacological profile of Crataeva nurvala Buch-Ham (Varuna): a review. Asian Pac J Trop Biomed 2:S1162–S1168.

  9. Bhojwani SS, Razdan MK (1996) Plant tissue culture: theory and practice, a revised. Elsevier, Amsterdam

  10. Bopana N, Saxena S (2008) In vitro propagation of a high value medicinal plant: Asparagus racemosus Willd. Vitro Cell Dev Biol Plant 44:525–532.

  11. Bopana N, Saxena S (2009) In vitro regeneration of clonally uniform plants of Crataeva magna: a high value medicinal tree by axillary branching method. New For 38:53–65.

  12. Dewir YH, Nurmansyah Naidoo Y, Teixeira da Silva JA (2018) Thidiazuron-induced abnormalities in plant tissue cultures. Plant Cell Rep 37:1451–1470.

  13. Driver JA, Suttle GRL (1987) Nursery handling of propagules. In: Bonga JM, Durzan DJ (eds) Cell and tissue culture in forestry. Forestry sciences, vol 24–26. Springer, Dordrecht, pp 320–335

  14. Guan Y, Li S-G, Fan X-F, Su Z-H (2016) Application of somatic embryogenesis in woody plants. Front Plant Sci 07:1–12.

  15. Himalaya Drug company (2019) Three leaved caper. Accessed 28 July 2019

  16. Huetteman CA, Preece JE (1993) Thidiazuron: a potent cytokinin for woody plant tissue culture. Plant Cell Tissue Organ Cult 33:105–119.

  17. Ikeuchi M, Sugimoto K, Iwase A (2013) Plant callus: mechanisms of induction and repression. Plant Cell 25:3159–3173.

  18. Ikeuchi M, Favero DS, Sakamoto Y et al (2019) Molecular mechanisms of plant regeneration. Annu Rev Plant Biol 70:377–406.

  19. Inamdar JA, Nataraj M, Mohan JSS, Subramanian RB (1990) Somatic embryogenesis from callus cultures of Crataeva nurvala Buch Ham. Phytomorphology 40:319–322

  20. Kasote DM, Jagtap SD, Thapa D et al (2017) Herbal remedies for urinary stones used in India and China: a review. J Ethnopharmacol 203:55–68.

  21. Kher MM, Nataraj M (2017) Micropropagation of Combretum ovalifolium Roxb.: a medicinally important plant. Rend Lincei 28:519–527.

  22. Kher MM, Nataraj M (2019) Direct somatic embryogenesis and shoot regeneration from leaves and internodes of Pluchea lanceolata (DC.) C.B. Clarke. Vitro Cell Dev Biol Plant.

  23. Kher MM, Nataraj M, Teixeira da Silva JA (2016) Micropropagation of Crataeva L. species. Rend Lincei 27:157–167.

  24. Kichu M, Malewska T, Akter K et al (2015) An ethnobotanical study of medicinal plants of Chungtia village, Nagaland, India. J Ethnopharmacol 166:5–17.

  25. Konar S, Adhikari S, Karmakar J et al (2019) Evaluation of subculture ages on organogenic response from root callus and SPAR based genetic fidelity assessment in the regenerants of Hibiscus sabdariffa L. Ind Crops Prod 135:321–329.

  26. Krishnaiah D, Sarbatly R, Nithyanandam R (2011) A review of the antioxidant potential of medicinal plant species. Food Bioprod Process 89:217–233.

  27. Kuvar NA, Lambole VB, Shah BN et al (2013) A valuable medicinal plant- Crataeva nurvala. Pharma Sci Monit 4:210–227

  28. Lelu-Walter MA, Gautier F, Eliášová K et al (2018) High gellan gum concentration and secondary somatic embryogenesis: two key factors to improve somatic embryo development in Pseudotsuga menziesii [Mirb.]. Plant Cell Tissue Organ Cult 132:137–155.

  29. Lu C (1993) The use of thidiazuron in tissue culture. Vitro Cell Dev Biol Plant 29:92–96.

  30. Mithila J, Hall JC, Victor JMR, Saxena PK (2003) Thidiazuron induces shoot organogenesis at low concentrations and somatic embryogenesis at high concentrations on leaf and petiole explants of African violet (Saintpaulia ionantha Wendl.). Plant Cell Rep 21:408–414.

  31. Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant 15:473–497.

  32. Murthy BNS, Murch SJ, Saxena PK (1998) Thidiazuron: a potent regulator of in vitro plant morphogenesis. Vitro Cell Dev Biol Plant 34:267–275.

  33. Nataraj M (1992) Crataeva nurvala Buch. Ham. PhD Thesis “In vitro studies in three angiosperm taxa.” Sardar Patel University, Vallabh Vidyanagar, pp 14–58

  34. Nataraj M, Padhya MA (1988) Insect gall formation in Crataeva nurvala Buch Ham. Proc Natl Acad Sci India Sect B Biol Sci 58:87–88

  35. Northmore JA, Sigurdson D, Schoor S et al (2016) Thidiazuron induces high-frequency indirect shoot organogenesis of Bienertia sinuspersici: a single-cell C4 species. Plant Cell Tissue Organ Cult 126:141–151.

  36. Panwar S, Vashistha BD (2008) Effect of some auxins on regenerative potential of various parts of Crataeva nurvala Buch.-Ham. Ann Agri Bio Res 13:103–113

  37. Patyal HC (1969) Significance of “Varaṇa-” (Crataeva roxburghii) in the Veda. Oriens 21(22):300–306

  38. Phondani PC, Bhatt ID, Negi VS et al (2016) Promoting medicinal plants cultivation as a tool for biodiversity conservation and livelihood enhancement in Indian Himalaya. J Asia-Pacific Biodivers 9:39–46.

  39. Piovan A, Caniato R, Cappelletti EM, Filippini R (2010) Organogenesis from shoot segments and via callus of endangered Kosteletzkya pentacarpos (L.) Ledeb. Plant Cell Tissue Organ Cult 100:309–315.

  40. Poonam K, Singh GS (2009) Ethnobotanical study of medicinal plants used by the Taungya community in Terai Arc Landscape, India. J Ethnopharmacol 123:167–176.

  41. Prakash A, Kumari S, Utkarshini et al (2014) Direct and callus mediated regeneration from nodal and internodal segment of Crataeva religiosa G. Forst. var nurvala (Buch.-Ham.) Hook. f. & Thomson. Indian J Biotechnol 13:263–267

  42. Raemakers CJJM, Jacobsen E, Visser RGF (1995) Secondary somatic embryogenesis and applications in plant breeding. Euphytica 81:93–107.

  43. Rajeswara Rao BR (2016) Genetic diversity, genetic erosion, conservation of genetic resources, and cultivation of medicinal plants. In: Ahuja M, Jain SM (eds) Genetic diversity and erosion in plants. Sustainable development and biodiversity, vol 8. Springer, Cham, pp 357–407.

  44. Rathore MS, Paliwal N, Anand KGV, Agarwal PK (2015) Somatic embryogenesis and in vitro plantlet regeneration in Salicornia brachiata Roxb. Plant Cell Tissue Organ Cult 120:355–360.

  45. Revathi J, Manokari M, Latha R et al (2019) In vitro propagation, in vitro flowering, ex vitro root regeneration and foliar micro-morphological analysis of Hedyotis biflora (Linn) Lam. Vegetos.

  46. Rout GR, Samantaray S, Das P (2000) In vitro manipulation and propagation of medicinal plants. Biotechnol Adv 18:91–120

  47. Schoendorfer N, Sharp N, Seipel T et al (2018) Urox containing concentrated extracts of Crataeva nurvala stem bark, Equisetum arvense stem and Lindera aggregata root, in the treatment of symptoms of overactive bladder and urinary incontinence: a phase 2, randomised, double-blind placebo controlled tri. BMC Complement Altern Med 18:1–11.

  48. Shikov AN, Pozharitskaya ON, Makarov VG et al (2014) Medicinal plants of the Russian Pharmacopoeia; their history and applications. J Ethnopharmacol 154:481–536.

  49. Shirin F, Maravi S (2006) Clonal propagation of an important medicinal tree Crataeva nurvala through enhanced axillary branching. J Herbs Spices Med Plants 12:165–174


  51. Singh A, Singh PK (2009) An ethnobotanical study of medicinal plants in Chandauli district of Uttar Pradesh, India. J Ethnopharmacol 121:324–329.

  52. Soni V (2009) Threatened wild medicinal plants: who cares? Curr Sci 96:875

  53. Sugimoto K, Temman H, Kadokura S, Matsunaga S (2019) To regenerate or not to regenerate: factors that drive plant regeneration. Curr Opin Plant Biol 47:138–150.

  54. Walia N, Sinha S, Babbar SB (2003) Micropropagation of Crataeva nurvala. Biol Plant 46:181–185.

  55. Walia N, Kaur A, Babbar SB (2007) An efficient, in vitro cyclic production of shoots from adult trees of Crataeva nurvala Buch. Ham. Plant Cell Rep 26:277–284.

  56. Yadav AS, Gupta SK (2006) Effect of micro-environment and human disturbance on the diversity of woody species in the Sariska tiger project in India. For Ecol Manage 225:178–189.



Author Information

Kher Mafatlal M.
P.G. Department of Biosciences, Sardar Patel University, Vallabh Vidyanagar, India