*Article not assigned to an issue yet
Kundu Rishav, Dhar Juhita, Paul Supriti, Sengupta Rabishankar, Parkash Vipin, Mitra Arup Kumar, Dhara Bikram
Keywords: Mangrove ecology, Tailor-made mycorrhizae, Molecular signaling, Ecological utility, Plant-parasite interactions
Mangroves, vital coastal ecosystems, heavily rely on mycorrhizal associations for their growth, nutrient acquisition, stress alleviation, and overall vitality. This comprehensive review explored the molecular signaling pathways that underlie intricate formation of mycorrhizae in mangroves. We highlighted recent advancements in understanding molecular interactions involved in the establishment of these symbiotic associations. Specifically, we investigated the exchange of chemical signals, including hormones and bacteriocins, between the fungi and mangroves, and elucidated their roles in plant growth and behavior within environmental context. In this section, we explored the importance of these root partnerships in mangrove ecosystem. We discussed how these associations benefit the plants by improving their ability to absorb nutrients, cope with stress, and contribute to a healthier overall environment. Notably, these associations have demonstrated positive impacts on carbon sequestration, sediment stabilization, and ecosystem productivity. By comprehensively exploring both molecular signaling pathways and ecological benefits, we underscore the intrinsic relationship between tailor-made mycorrhizae and sustainability of mangrove ecosystems. Understanding these signaling pathways is pivotal for effective conservation and restoration strategies. This review also identifies existing knowledge gaps and proposes future research directions to advance our understanding of tailor-made mycorrhizal formation in mangroves, thereby facilitating targeted conservation and sustainability efforts.
Agusrianto Y (2021) The roles of arbuscular mycorrhizae in supporting the mangrove growth. J Health Technol Sci (JHTS) 2(2):71–79. https://doi.org/10.47918/jhts.v2i1.221
Akaji Y, Inoue T, Taniguchi T, Baba S (2022) Arbuscular mycorrhizal fungal communities of a mangrove forest along a salinity gradient on Iriomote Island. Plant Soil 472(1):145–159. https://doi.org/10.1007/s11104-021-05193-4
Anneboina LR, Kavi Kumar KS (2017) Economic analysis of mangrove and marine fishery linkages in India. Ecosyst Serv 24:114–123. https://doi.org/10.1016/j.ecoser.2017.02.004
Bahadur A, Batool A, Nasir F, Jiang S, Mingsen Q, Zhang Q et al (2019) Mechanistic insights into arbuscular mycorrhizal fungi-mediated drought stress tolerance in plants. Int J Mol Sci 20(17):4199
Barik J, Chowdhury S (2014) True mangrove species of Sundarbans Delta, West Bengal, eastern India. Check List. https://doi.org/10.15560/10.2.329
Barto EK, Hilker M, Müller F, Mohney BK, Weidenhamer JD et al (2011) The fungal fast lane: common mycorrhizal networks extend bioactive zones of allelochemicals in soils. PLoS One 6(11):e27195. https://doi.org/10.1371/journal.pone.0027195
Bennett AE, Groten K (2022) The costs and benefits of plant–arbuscular mycorrhizal fungal interactions. Annu Rev Plant Biol 73:649–672
Boudsocq M, Droillard M-J, Barbier-Brygoo H, Laurière C (2007) Different phosphorylation mechanisms are involved in the activation of sucrose non-fermenting 1 related protein kinases 2 by osmotic stresses and abscisic acid. Plant Mol Biol 63(4):491–503. https://doi.org/10.1007/s11103-006-9103-1
Bücking H, Mensah JA, Fellbaum CR (2016) Common mycorrhizal networks and their effect on the bargaining power of the fungal partner in the arbuscular mycorrhizal symbiosis. Commun Integrat Biol 9:1. https://doi.org/10.1080/19420889.2015.1107684
Carrasquilla-Henao M, Ban N, Rueda M, Juanes F (2019) The mangrove-fishery relationship: a local ecological knowledge perspective. Mar Policy 108:103656. https://doi.org/10.1016/j.marpol.2019.103656
Chadha N, Mishra M, Rajpal K, Bajaj R, Choudhary DK, Varma A (2015) An ecological role of fungal endophytes to ameliorate plants under biotic stress. Arch Microbiol 197(7):869–881. https://doi.org/10.1007/s00203-015-1130-3
Chandrasekaran M, Boughattas S, Hu S, Oh SH, Sa T (2014) A meta-analysis of arbuscular mycorrhizal effects on plants grown under salt stress. Mycorrhiza 24:611–625
Chen S, Zhao H, Zou C, Li Y, Chen Y, Wang Z et al (2017) Combined Inoculation with multiple arbuscular mycorrhizal fungi improves growth, nutrient uptake and photosynthesis in cucumber seedlings. Front Microbiol 8:25–16. https://doi.org/10.3389/fmicb.2017.02516
Chen X, Chen J, Liao D, Ye H, Li C, Luo Z et al (2022) Auxin-mediated regulation of arbuscular mycorrhizal symbiosis: a role of SlGH3.4 in tomato. Plant Cell Environ 45(3):955–968. https://doi.org/10.1111/pce.14210
Cheng Z-S, Pan J-H, Tang W-C, Chen Q-J, Lin Y-C (2009) Biodiversity and biotechnological potential of mangrove-associated fungi. J Forest Res 20(1):63–72. https://doi.org/10.1007/s11676-009-0012-4
Coccina A, Cavagnaro TR, Pellegrino E, Ercoli L, McLaughlin MJ, Watts-Williams SJ (2019) The mycorrhizal pathway of zinc uptake contributes to zinc accumulation in barley and wheat grain. BMC Plant Biol 19(1):133. https://doi.org/10.1186/s12870-019-1741-y
Cui L, Guo F, Zhang J, Yang S, Meng J, Geng Y et al (2019) Synergy of arbuscular mycorrhizal symbiosis and exogenous Ca2+ benefits peanut (Arachis hypogaea L.) growth through the shared hormone and flavonoid pathway. Sci Reports 9(1):16281. https://doi.org/10.1038/s41598-019-52630-7
Cui X, Jia B, Diao F, Li X, Xu J, Zhang Z et al (2022) Transcriptomic analysis reveals the molecular mechanisms of arbuscular mycorrhizal fungi and nitrilotriacetic acid on Suaeda salsa tolerance to combined stress of cadmium and salt. Process Saf Environ Protect 160:210–220
D’Souza J (2016) Arbuscular mycorrhizal diversity from mangroves: a review. In: Pagano MC (ed) Recent advances on mycorrhizal fungi. Springer International Publishing, Cham, pp 109–116. https://doi.org/10.1007/978-3-319-24355-9_10
D’Souza J, Rodrigues BF (2013) Biodiversity of Arbuscular Mycorrhizal (AM) fungi in mangroves of Goa in West India. J Forest Res 24(3):515–523. https://doi.org/10.1007/s11676-013-0342-0
Dahdouh-Guebas F, Vrancken D, Ravishankar T, Koedam N (2006) Short-term mangrove browsing by feral water buffalo: conflict between natural resources, wildlife and subsistence interests? Environ Conserv 33(2):157–163
Davies PJ (2010) The plant hormones their nature, occurrence, and functions. In: Davies PJ (ed) Plant hormones biosynthesis, signal transduction, action. Springer Netherlands, Dordrecht, pp 1–15. https://doi.org/10.1007/978-1-4020-2686-7_1
Debellé F (2020) The common symbiotic signaling pathway. In The Model Legume Medicago truncatula. pp 523–528. https://doi.org/10.1002/9781119409144.ch64
del Cerro P, Cook NM, Huisman R, Dangeville P, Grubb LE, Marchal C et al (2022) Engineered CaM2 modulates nuclear calcium oscillation and enhances legume root nodule symbiosis. Proc Natl Acad Sci 119(13):e2200099119. https://doi.org/10.1073/pnas.2200099119
Delavaux CS, Ramos RJ, Sturmer SL, Bever JD (2022) Environmental identification of arbuscular mycorrhizal fungi using the LSU rDNA gene region: an expanded database and improved pipeline. Mycorrhiza 32(2):145–153. https://doi.org/10.1007/s00572-022-01068-3
Devadatha B, Sarma VV (2018) Pontoporeia mangrovei sp. nov, a new marine fungus from an Indian mangrove along with a new geographical and host record of Falciformispora lignatilis. Curr Res Environ Appl Mycol 8:238–246
Diao F, Dang Z, Cui X, Xu J, Jia B, Ding S et al (2021) Transcriptomic analysis revealed distinctive modulations of arbuscular mycorrhizal fungi inoculation in halophyte Suaeda salsa under moderate salt conditions. Environ Exp Bot 183:104337
Dsouza J, Rodrigues BF (2017) Enhancement of growth in mangrove plant (Ceriops tagal) by Rhizophagus clarus. J Plant Nutr 40(3):365–371. https://doi.org/10.1080/01904167.2016.1240197
Duc NH, Vo AT, Haddidi I, Daood H, Posta K (2021) Arbuscular mycorrhizal fungi improve tolerance of the medicinal plant Eclipta prostrata (L.) and induce major changes in polyphenol profiles under salt stresses. Front Plant Sci 11:612299
Etemadi M, Gutjahr C, Couzigou J-M, Zouine M, Lauressergues D, Timmers A et al (2014) Auxin Perception is required for arbuscule development in arbuscular mycorrhizal symbiosis. Plant Physiol 166(1):281–292. https://doi.org/10.1104/pp.114.246595
Evelin H, Kapoor R, Giri B (2009) Arbuscular mycorrhizal fungi in alleviation of salt stress: a review. Ann Bot 104(7):1263–1280. https://doi.org/10.1093/aob/mcp251
Evelin H, Devi TS, Gupta S, Kapoor R (2019) Mitigation of salinity stress in plants by arbuscular mycorrhizal symbiosis: current understanding and new challenges. Front Plant Sci 10:470
Fiorilli V, Wang JY, Bonfante P, Lanfranco L, Al-Babili S (2019) Apocarotenoids: old and new mediators of the arbuscular mycorrhizal symbiosis. Front Plant Sci. https://doi.org/10.3389/fpls.2019.01186
Foo E (2013) Auxin influences strigolactones in pea mycorrhizal symbiosis. J Plant Physiol 170(5):523–528. https://doi.org/10.1016/j.jplph.2012.11.002
Foo E, Ross JJ, Jones WT, Reid JB (2013) Plant hormones in arbuscular mycorrhizal symbioses: an emerging role for gibberellins. Ann Bot 111(5):769–779. https://doi.org/10.1093/aob/mct041
Gaonkar S, Rodrigues BF (2020) Diversity of arbuscular mycorrhizal (AM) fungi in mangroves of Chorao Island, Goa, India. Wetlands Ecol Manage 28(5):765–778. https://doi.org/10.1007/s11273-020-09747-8
Gaonkar S, Rodrigues BF (2021) Arbuscular mycorrhizal fungal status in mangroves of Pichavaram Forest, Tamil Nadu, India. Trop Ecol 62(4):538–548. https://doi.org/10.1007/s42965-021-00167-0
Gerami Z, Lakzian A, Hemati A, Amirifar A, Asgari Lajayer B, van Hullebusch ED (2021) Effect of cadmium on sorghum root colonization by glomeral fungi and its impact on total and easily extractable glomalin production. Environ Sci Pollut Res 28(26):34570–34583. https://doi.org/10.1007/s11356-021-13205-0
Ghosh P (2015) Conservation and conflicts in the sundarban biosphere reserve, India. Geograph Rev 105(4):429–440. https://doi.org/10.1111/j.1931-0846.2015.12101.x
Giri B, Kapoor R, Mukerji KG (2007) Improved tolerance of Acacia nilotica to salt stress by arbuscular mycorrhiza, glomus fasciculatum may be partly related to elevated K/Na ratios in root and shoot tissues. Microb Ecol 54(4):753–760. https://doi.org/10.1007/s00248-007-9239-9
Gobbato E, Marsh JF, Vernié T, Wang E, Maillet F, Kim J et al (2012) A GRAS-type transcription factor with a specific function in mycorrhizal signaling. Curr Biol 22(23):2236–2241. https://doi.org/10.1016/j.cub.2012.09.044
Gopinathan M, Mahesh V, Durgadevi R (2017) Seasonal diversity of AM fungi in mangroves of South East coastal area of Muthupet, India. Int J Mod Res Rev 5:1474–1780
Gosling P, Hodge A, Goodlass G, Bending GD (2006) Arbuscular mycorrhizal fungi and organic farming. Agr Ecosyst Environ 113(1–4):17–35
Guo X, Gong J (2014) Differential effects of abiotic factors and host plant traits on diversity and community composition of root-colonizing arbuscular mycorrhizal fungi in a salt-stressed ecosystem. Mycorrhiza 24(2):79–94. https://doi.org/10.1007/s00572-013-0516-9
Gutjahr C (2014) Phytohormone signaling in arbuscular mycorhiza development. Curr Opin Plant Biol 20:26–34. https://doi.org/10.1016/j.pbi.2014.04.003
Hao S, Su W, Li QQ (2021) Adaptive roots of mangrove Avicennia marina: structure and gene expressions analyses of pneumatophores. Sci Total Environ 757:143994. https://doi.org/10.1016/j.scitotenv.2020.143994
Hayward A, Stirnberg P, Beveridge C, Leyser O (2009) Interactions between Auxin and Strigolactone in shoot branching control. Plant Physiol 151(1):400–412. https://doi.org/10.1104/pp.109.137646
Hill EM, Robinson LA, Abdul-Sada A, Vanbergen AJ, Hodge A, Hartley SE (2018) Arbuscular mycorrhizal fungi and plant chemical defence: effects of colonisation on aboveground and belowground metabolomes. J Chem Ecol 44(2):198–208. https://doi.org/10.1007/s10886-017-0921-1
Hoeksema JD, Bala Chaudhary V, Gehring CA, Johnson NC, Karst J, Koide RT, Pringle A et al (2010) A meta-analysis of context-dependency in plant response to inoculation with mycorrhizal fungi. Ecol Lett 13(3):394–407
Holste EK, Holl KD, Zahawi RA, Kobe RK (2016) Reduced aboveground tree growth associated with higher arbuscular mycorrhizal fungal diversity in tropical forest restoration. Ecol Evol 6(20):7253–7262. https://doi.org/10.1002/ece3.2487
Hongmei Q, Xiaoxuan Z, Wenyue S, Xing Z, Pengfei J, Shanshan H et al (2020) The genomic and transcriptomic foundations of viviparous seed development in mangroves. bioRxiv. https://doi.org/10.1101/2020.10.19.346163
Idris NA, Muhd Zuhir Z, Mohd Radzuan NA, Muda NS, Rosli RI (2019) In vitro response of fungi isolated from orchids in bris, setiu wetland and mangrove in morib, to different concentrations of lead. Malays Appl Biol 48(1):229–233
Jansa J, Forczek ST, Rozmoš M, Püschel D, Bukovská P, Hršelová H (2019) Arbuscular mycorrhiza and soil organic nitrogen: network of players and interactions. Chem Biol Technol Agric 6(1):10. https://doi.org/10.1186/s40538-019-0147-2
Jin Y, Liu H, Luo D, Yu N, Dong W, Wang C et al (2016) DELLA proteins are common components of symbiotic rhizobial and mycorrhizal signalling pathways. Nat Commun 7(1):12433. https://doi.org/10.1038/ncomms12433
Katalin P, Nguyen Hong D (2019) Benefits of arbuscular mycorrhizal fungi application to crop production under water scarcity. In: Gabrijel O (ed) Drought. IntechOpen, Rijeka, p Ch. 10
Kaur S, Suseela V (2020) Unraveling arbuscular mycorrhiza-induced changes in plant primary and secondary metabolome. Metabolites 10(8):335. https://doi.org/10.3390/metabo10080335
Khaliq A, Perveen S, Alamer KH, Zia Ul Haq M, Rafique Z, Alsudays IM, Althobaiti AT, Saleh MA, Hussain S, Attia H (2022) Arbuscular mycorrhizal fungi symbiosis to enhance plant-soil interaction. Sustainability 14:7840. https://doi.org/10.3390/su14137840
Kondhare KR, Patil AB, Giri AP (2021) Auxin: An emerging regulator of tuber and storage root development. Plant Sci 306:110854. https://doi.org/10.1016/j.plantsci.2021.110854
Krishnaiah D, Sarbatly R, Nithyanandam R (2011) A review of the antioxidant potential of medicinal plant species. Food Bioprod Process 89(3):217–233. https://doi.org/10.1016/j.fbp.2010.04.008
Kundu S, Gantait S (2017) Abscisic acid signal crosstalk during abiotic stress response. Plant Gene 11:61–69. https://doi.org/10.1016/j.plgene.2017.04.007
Liao D, Wang S, Cui M, Liu J, Chen A, Xu G (2018) Phytohormones regulate the development of arbuscular mycorrhizal symbiosis. Int J Mol Sci 19(10):3146. https://doi.org/10.3390/ijms19103146
Mano Y, Nemoto K (2012) The pathway of auxin biosynthesis in plants. J Exp Bot 63(8):2853–2872. https://doi.org/10.1093/jxb/ers091
Marinho F, Silva G, Ferreira A, Veras J, Sousa N, Tomio Goto B et al (2014) Bulbospora minima, a new genus and a new species in the Glomeromycetes from semi-arid Northeast Brazil. Sydowia -Horn- 66:313–323. https://doi.org/10.12905/0380.sydowia66(2)2014-0313
Marinho F, Ramalho da Silva I, Oehl F, Maia L (2018) Checklist of arbuscular mycorrhizal fungi in tropical forests. Sydowia -Horn- 70:107–127. https://doi.org/10.12905/0380.sydowia70-2018-0107
Martín-Rodríguez JÁ, Ocampo JA, Molinero-Rosales N, Tarkowská D, Ruíz-Rivero O, García-Garrido JM (2015) Role of gibberellins during arbuscular mycorrhizal formation in tomato: new insights revealed by endogenous quantification and genetic analysis of their metabolism in mycorrhizal roots. Physiol Plant 154(1):66–81. https://doi.org/10.1111/ppl.12274
Miranda JCC, Vilela L, Miranda LN (2005) Dinâmica e contribuição da micorriza arbuscular em sistemas de produção com rotação de culturas. Pesq Agrop Brasileira. https://doi.org/10.1590/S0100-204X2005001000009
Mitra D, Uniyal N, Panneerselvam P, Senapati A, Ganeshamurthy AN (2020) Role of mycorrhiza and its associated bacteria on plant growth promotion and nutrient management in sustainable agriculture. Int J Life Sci Appl Sci 1(1):1–1
Mohanta TK, Bae H (2015) Functional genomics and signaling events in mycorrhizal symbiosis. J Plant Interact 10(1):21–40. https://doi.org/10.1080/17429145.2015.1005180
Müller LM, Harrison MJ (2019) Phytohormones, miRNAs, and peptide signals integrate plant phosphorus status with arbuscular mycorrhizal symbiosis. Curr Opin Plant Biol 50:132–139. https://doi.org/10.1016/j.pbi.2019.05.004
Murray JD, Muni RRD, Torres-Jerez I, Tang Y, Allen S, Andriankaja M et al (2011) Vapyrin, a gene essential for intracellular progression of arbuscular mycorrhizal symbiosis, is also essential for infection by rhizobia in the nodule symbiosis of Medicago truncatula. Plant J 65(2):244–252. https://doi.org/10.1111/j.1365-313X.2010.04415.x
Nethaji Mariappan VE, Asokan HN (2016) A study of water quality status of Mangrove Vegetation in Pichavaram Estaury. J Agric Ecol Res Int 5:1–11. https://doi.org/10.9734/JAERI/2016/16611
Nizam A, Meera SP, Kumar A (2022) Genetic and molecular mechanisms underlying mangrove adaptations to intertidal environments. iScience. https://doi.org/10.1016/j.isci.2021.103547
Normanly J (2010) Approaching cellular and molecular resolution of auxin biosynthesis and metabolism. Cold Spring Harb Perspect Biol 2(1):a001594. https://doi.org/10.1101/cshperspect.a001594
Oehl F, Körner C (2014) Multiple mycorrhization at the coldest place known for Angiosperm plant life. Alp Bot 124(2):193–198. https://doi.org/10.1007/s00035-014-0138-7
Pan J, Peng F, Tedeschi A, Xue X, Wang T, Liao J et al (2020) Do halophytes and glycophytes differ in their interactions with arbuscular mycorrhizal fungi under salt stress? A meta-analysis. Botanical Stud 61:1–13
Petrášek J, Friml JI (2009) Auxin transport routes in plant development. Development 136(16):2675–2688. https://doi.org/10.1242/dev.030353
Pimprikar P, Carbonnel S, Paries M, Katzer K, Klingl V, Bohmer MJ et al (2016) A CCaMK-CYCLOPS-DELLA complex activates transcription of RAM1 to regulate arbuscule branching. Curr Biol 26(8):987–998. https://doi.org/10.1016/j.cub.2016.01.069
Ramírez-Viga T, Guadarrama P, Castillo-Argüero S, Estrada-Medina H, García-Sánchez R, Hernández-Cuevas L et al (2020) Relationship between arbuscular mycorrhizal association and edaphic variables in mangroves of the Coast of Yucatán, Mexico. Wetlands 40(3):539–549. https://doi.org/10.1007/s13157-019-01196-1
Reef R, Feller IC, Lovelock CE (2010) Nutrition of mangroves. Tree Physiol 30(9):1148–1160. https://doi.org/10.1093/treephys/tpq048
Roy S, Chakraborty AP, Chakraborty R (2021) Understanding the potential of root microbiome influencing salt-tolerance in plants and mechanisms involved at the transcriptional and translational level. Physiol Plant 173(4):1657–1681. https://doi.org/10.1111/ppl.13570
Ruiz-Lozano JM, Aroca R, Zamarreño ÁM, Molina S, Andreo-Jiménez B, Porcel R et al (2016) Arbuscular mycorrhizal symbiosis induces strigolactone biosynthesis under drought and improves drought tolerance in lettuce and tomato. Plant Cell Environ 39(2):441–452. https://doi.org/10.1111/pce.12631
Saxena B, Shukla K & Giri B (2017) Arbuscular mycorrhizal fungi and tolerance of salt stress in plants. In: Arbuscular mycorrhizas and stress tolerance of plants, pp 67–97
Sibero MT, Igarashi Y, Radjasa OK, Sabdono A, Trianto A, Zilda DS, Wijaya YJ (2019) Sponge-associated fungi from a mangrove habitat in Indonesia: species composition, antimicrobial activity, enzyme screening and bioactive profiling. Int Aquatic Res 11(2):173–186. https://doi.org/10.1007/s40071-019-0227-8
Sievers M, Chowdhury MR, Adame MF, Bhadury P, Bhargava R, Buelow C et al (2020) Indian Sundarbans mangrove forest considered endangered under Red List of Ecosystems, but there is cause for optimism. Biol Conserv 251:108751. https://doi.org/10.1016/j.biocon.2020.108751
Singh S, Katzer K, Lambert J, Cerri M, Parniske M (2014) CYCLOPS, a DNA-binding transcriptional activator, orchestrates symbiotic root nodule development. Cell Host Microbe 15(2):139–152. https://doi.org/10.1016/j.chom.2014.01.011
Slimani A, Ait-El-Mokhtar M, Ben-Laouane R, Boutasknit A, Anli M, Abouraicha EF, Oufdou K, Meddich A, Baslam M (2024) Molecular and systems biology approaches for harnessing the symbiotic interaction in mycorrhizal symbiosis for grain and oil crop cultivation. Int J Mol Sci 25:912. https://doi.org/10.3390/ijms25020912
Solís-Rodríguez URJ, Ramos-Zapata JA, Hernández-Cuevas L, Salinas-Peba L, Guadarrama P (2020) Arbuscular mycorrhizal fungi diversity and distribution in tropical low flooding forest in Mexico. Mycol Prog 19(3):195–204. https://doi.org/10.1007/s11557-019-01550-x
Sreenivasulu N, Radchuk V, Alawady A, Borisjuk L, Weier D, Staroske N et al (2010) De-regulation of abscisic acid contents causes abnormal endosperm development in the barley mutant seg8. Plant J 64(4):589–603. https://doi.org/10.1111/j.1365-313X.2010.04350.x
Sridhar KR, Roy S & Sudheep NM (2011) Assemblage and diversity of arbuscular mycorrhizal fungi in mangrove plant species of the southwest coast of India. Mangroves Ecol Biol Taxonomy 257–274
Srivastava LM (2002) CHAPTER 7 - Gibberellins. In: Srivastava LM (ed) Plant growth and development. Academic Press, San Diego, pp 171–190
Stürmer SL, Kemmelmeier K (2021) The glomeromycota in the neotropics. Front Microbiol. https://doi.org/10.3389/fmicb.2020.553679
Thatoi H, Behera BC, Mishra RR (2013) Ecological role and biotechnological potential of mangrove fungi: a review. Mycology 4(1):54–71. https://doi.org/10.1080/21501203.2013.785448
Tian W, Wang C, Gao Q, Li L, Luan S (2020) Calcium spikes, waves and oscillations in plant development and biotic interactions. Nature Plants 6(7):750–759. https://doi.org/10.1038/s41477-020-0667-6
Tomio Goto B, Silva G, Assis D, Silva DK, Souza R, Ferreira A et al (2012) Intraornatosporaceae (Gigasporales), a new family with two new genera and two new species. Mycotaxon -Ithaca Ny- 119:117–132. https://doi.org/10.5248/119.117
Tsikou D, Yan Z, Holt DB, Abel NB, Reid DE, Madsen LH et al (2018) Systemic control of legume susceptibility to rhizobial infection by a mobile microRNA. Science 362(6411):233–236
Venkateshwaran M, Cosme A, Han L, Banba M, Satyshur KA, Schleiff E et al (2012) The recent evolution of a symbiotic ion channel in the legume family altered ion conductance and improved functionality in calcium signaling. Plant Cell 24(6):2528–2545. https://doi.org/10.1105/tpc.112.098475
Wahab A, Muhammad M, Munir A, Abdi G, Zaman W, Ayaz A et al (2023) Role of arbuscular mycorrhizal fungi in regulating growth, enhancing productivity, and potentially influencing ecosystems under abiotic and biotic stresses. Plants 12(17):3102
Wang Y, Li T, Li Y, Qiu Q, Li S, Xin G (2015) Distribution of arbuscular mycorrhizal fungi in four semi-mangrove plant communities. Ann Microbiol 65(2):603–610. https://doi.org/10.1007/s13213-014-0896-x
Wang Q, Lu H, Chen J, Jiang Y, Williams MA, Wu S et al (2020) Interactions of soil metals with glomalin-related soil protein as soil pollution bioindicators in mangrove wetland ecosystems. Sci Total Environ 709:136051. https://doi.org/10.1016/j.scitotenv.2019.136051
Wang X-Q, Wang Y-H, Song Y-B, Dong M (2022) Formation and functions of arbuscular mycorrhizae in coastal wetland ecosystems: a review. Ecosyst Health Sustain 8(1):2144465. https://doi.org/10.1080/20964129.2022.2144465
Waters MT, Gutjahr C, Bennett T, Nelson DC (2017) Strigolactone signaling and evolution. Annu Rev Plant Biol 68(1):291–322. https://doi.org/10.1146/annurev-arplant-042916-040925
Wilkinson S, Kudoyarova GR, Veselov DS, Arkhipova TN, Davies WJ (2012) Plant hormone interactions: innovative targets for crop breeding and management. J Exp Bot 63(9):3499–3509. https://doi.org/10.1093/jxb/ers148
Willige BRC, Ghosh S, Nill C, Zourelidou M, Dohmann EMN, Maier A, Schwechheimer C (2007) The DELLA domain of GA INSENSITIVE mediates the interaction with the GA INSENSITIVE DWARF1A gibberellin receptor of arabidopsis. Plant Cell 19(4):1209–1220. https://doi.org/10.1105/tpc.107.051441
Wirsel SGR (2004) Homogenous stands of a wetland grass harbour diverse consortia of arbuscular mycorrhizal fungi. FEMS Microbiol Ecol 48(2):129–138. https://doi.org/10.1016/j.femsec.2004.01.006
Xie X, Weng B, Cai B, Dong Y, Yan C (2014) Effects of arbuscular mycorrhizal inoculation and phosphorus supply on the growth and nutrient uptake of Kandelia obovata (Sheue, Liu & Yong) seedlings in autoclaved soil. Appl Soil Ecol 75:162–171. https://doi.org/10.1016/j.apsoil.2013.11.009
Yang X, Yang Y-N, Xue L-J, Zou M-J, Liu J-Y, Chen F, Xue H-W (2011) Rice ABI5-like1 regulates abscisic acid and auxin responses by affecting the expression of ABRE-containing genes. Plant Physiol 156(3):1397–1409. https://doi.org/10.1104/pp.111.173427
Yoneyama K, Xie X, Kusumoto D, Sekimoto H, Sugimoto Y, Takeuchi Y, Yoneyama K (2007) Nitrogen deficiency as well as phosphorus deficiency in sorghum promotes the production and exudation of 5-deoxystrigol, the host recognition signal for arbuscular mycorrhizal fungi and root parasites. Planta 227(1):125–132. https://doi.org/10.1007/s00425-007-0600-5
Yoneyama K, Mori N, Sato T, Yoda A, Xie X, Okamoto M et al (2018) Conversion of carlactone to carlactonoic acid is a conserved function of MAX1 homologs in strigolactone biosynthesis. New Phytol 218(4):1522–1533. https://doi.org/10.1111/nph.15055
Yoshida T, Fujita Y, Sayama H, Kidokoro S, Maruyama K, Mizoi J et al (2010) AREB1, AREB2, and ABF3 are master transcription factors that cooperatively regulate ABRE-dependent ABA signaling involved in drought stress tolerance and require ABA for full activation. Plant J 61(4):672–685. https://doi.org/10.1111/j.1365-313X.2009.04092.x
Yu H, Liu X, Yang C, Peng Y, Yu X, Gu H et al (2021) Co-symbiosis of arbuscular mycorrhizal fungi (AMF) and diazotrophs promote biological nitrogen fixation in mangrove ecosystems. Soil Biol Biochem 161:108382. https://doi.org/10.1016/j.soilbio.2021.108382
Zhang H-S, Zhou M-X, Zai X-M, Zhao F-G, Qin P (2020) Spatio-temporal dynamics of arbuscular mycorrhizal fungi and soil organic carbon in coastal saline soil of China. Sci Rep 10(1):9781. https://doi.org/10.1038/s41598-020-66976-w
Zhao Y (2010) Auxin biosynthesis and its role in plant development. Annu Rev Plant Biol 61(1):49–64. https://doi.org/10.1146/annurev-arplant-042809-112308
Zipfel C, Oldroyd GED (2017) Plant signalling in symbiosis and immunity. Nature 543(7645):328–336. https://doi.org/10.1038/nature22009
Department of Microbiology, . Xavier’s College (Autonomous), Kolkata, India