Investigating the function of mangrove mycorrhizal fungi with special emphasis on arbuscular mycorrhizae (AMF) symbiosis in promoting ecosystem health and sustainability

*Article not assigned to an issue yet

, , , , , ,


Review Articles | Published:

E-ISSN: 2229-4473.
Website: www.vegetosindia.org
Pub Email: contact@vegetosindia.org
DOI: 10.1007/s42535-024-01029-5
First Page: 0
Last Page: 0
Views: 1660

Keywords: Mangrove ecology, Tailor-made mycorrhizae, Molecular signaling, Ecological utility, Plant-parasite interactions


Abstract


Mangroves, vital coastal ecosystems, heavily rely on mycorrhizal associations for their growth, nutrient acquisition, stress alleviation, and overall vitality. This comprehensive review explored the molecular signaling pathways that underlie intricate formation of mycorrhizae in mangroves. We highlighted recent advancements in understanding molecular interactions involved in the establishment of these symbiotic associations. Specifically, we investigated the exchange of chemical signals, including hormones and bacteriocins, between the fungi and mangroves, and elucidated their roles in plant growth and behavior within environmental context. In this section, we explored the importance of these root partnerships in mangrove ecosystem. We discussed how these associations benefit the plants by improving their ability to absorb nutrients, cope with stress, and contribute to a healthier overall environment. Notably, these associations have demonstrated positive impacts on carbon sequestration, sediment stabilization, and ecosystem productivity. By comprehensively exploring both molecular signaling pathways and ecological benefits, we underscore the intrinsic relationship between tailor-made mycorrhizae and sustainability of mangrove ecosystems. Understanding these signaling pathways is pivotal for effective conservation and restoration strategies. This review also identifies existing knowledge gaps and proposes future research directions to advance our understanding of tailor-made mycorrhizal formation in mangroves, thereby facilitating targeted conservation and sustainability efforts.

Mangrove ecology, Tailor-made mycorrhizae, Molecular signaling, Ecological utility, Plant-parasite interactions


References


Agusrianto Y (2021) The roles of arbuscular mycorrhizae in supporting the mangrove growth. J Health Technol Sci (JHTS) 2(2):71–79. https://doi.org/10.47918/jhts.v2i1.221


Akaji Y, Inoue T, Taniguchi T, Baba S (2022) Arbuscular mycorrhizal fungal communities of a mangrove forest along a salinity gradient on Iriomote Island. Plant Soil 472(1):145–159. https://doi.org/10.1007/s11104-021-05193-4


Anneboina LR, Kavi Kumar KS (2017) Economic analysis of mangrove and marine fishery linkages in India. Ecosyst Serv 24:114–123. https://doi.org/10.1016/j.ecoser.2017.02.004


Bahadur A, Batool A, Nasir F, Jiang S, Mingsen Q, Zhang Q et al (2019) Mechanistic insights into arbuscular mycorrhizal fungi-mediated drought stress tolerance in plants. Int J Mol Sci 20(17):4199


Barik J, Chowdhury S (2014) True mangrove species of Sundarbans Delta, West Bengal, eastern India. Check List. https://doi.org/10.15560/10.2.329


Barto EK, Hilker M, Müller F, Mohney BK, Weidenhamer JD et al (2011) The fungal fast lane: common mycorrhizal networks extend bioactive zones of allelochemicals in soils. PLoS One 6(11):e27195. https://doi.org/10.1371/journal.pone.0027195


Bennett AE, Groten K (2022) The costs and benefits of plant–arbuscular mycorrhizal fungal interactions. Annu Rev Plant Biol 73:649–672


Boudsocq M, Droillard M-J, Barbier-Brygoo H, Laurière C (2007) Different phosphorylation mechanisms are involved in the activation of sucrose non-fermenting 1 related protein kinases 2 by osmotic stresses and abscisic acid. Plant Mol Biol 63(4):491–503. https://doi.org/10.1007/s11103-006-9103-1


Bücking H, Mensah JA, Fellbaum CR (2016) Common mycorrhizal networks and their effect on the bargaining power of the fungal partner in the arbuscular mycorrhizal symbiosis. Commun Integrat Biol 9:1. https://doi.org/10.1080/19420889.2015.1107684


Carrasquilla-Henao M, Ban N, Rueda M, Juanes F (2019) The mangrove-fishery relationship: a local ecological knowledge perspective. Mar Policy 108:103656. https://doi.org/10.1016/j.marpol.2019.103656


Chadha N, Mishra M, Rajpal K, Bajaj R, Choudhary DK, Varma A (2015) An ecological role of fungal endophytes to ameliorate plants under biotic stress. Arch Microbiol 197(7):869–881. https://doi.org/10.1007/s00203-015-1130-3


Chandrasekaran M, Boughattas S, Hu S, Oh SH, Sa T (2014) A meta-analysis of arbuscular mycorrhizal effects on plants grown under salt stress. Mycorrhiza 24:611–625


Chen S, Zhao H, Zou C, Li Y, Chen Y, Wang Z et al (2017) Combined Inoculation with multiple arbuscular mycorrhizal fungi improves growth, nutrient uptake and photosynthesis in cucumber seedlings. Front Microbiol 8:25–16. https://doi.org/10.3389/fmicb.2017.02516


Chen X, Chen J, Liao D, Ye H, Li C, Luo Z et al (2022) Auxin-mediated regulation of arbuscular mycorrhizal symbiosis: a role of SlGH3.4 in tomato. Plant Cell Environ 45(3):955–968. https://doi.org/10.1111/pce.14210


Cheng Z-S, Pan J-H, Tang W-C, Chen Q-J, Lin Y-C (2009) Biodiversity and biotechnological potential of mangrove-associated fungi. J Forest Res 20(1):63–72. https://doi.org/10.1007/s11676-009-0012-4


Coccina A, Cavagnaro TR, Pellegrino E, Ercoli L, McLaughlin MJ, Watts-Williams SJ (2019) The mycorrhizal pathway of zinc uptake contributes to zinc accumulation in barley and wheat grain. BMC Plant Biol 19(1):133. https://doi.org/10.1186/s12870-019-1741-y


Cui L, Guo F, Zhang J, Yang S, Meng J, Geng Y et al (2019) Synergy of arbuscular mycorrhizal symbiosis and exogenous Ca2+ benefits peanut (Arachis hypogaea L.) growth through the shared hormone and flavonoid pathway. Sci Reports 9(1):16281. https://doi.org/10.1038/s41598-019-52630-7


Cui X, Jia B, Diao F, Li X, Xu J, Zhang Z et al (2022) Transcriptomic analysis reveals the molecular mechanisms of arbuscular mycorrhizal fungi and nitrilotriacetic acid on Suaeda salsa tolerance to combined stress of cadmium and salt. Process Saf Environ Protect 160:210–220


D’Souza J (2016) Arbuscular mycorrhizal diversity from mangroves: a review. In: Pagano MC (ed) Recent advances on mycorrhizal fungi. Springer International Publishing, Cham, pp 109–116. https://doi.org/10.1007/978-3-319-24355-9_10


D’Souza J, Rodrigues BF (2013) Biodiversity of Arbuscular Mycorrhizal (AM) fungi in mangroves of Goa in West India. J Forest Res 24(3):515–523. https://doi.org/10.1007/s11676-013-0342-0


Dahdouh-Guebas F, Vrancken D, Ravishankar T, Koedam N (2006) Short-term mangrove browsing by feral water buffalo: conflict between natural resources, wildlife and subsistence interests? Environ Conserv 33(2):157–163


Davies PJ (2010) The plant hormones their nature, occurrence, and functions. In: Davies PJ (ed) Plant hormones biosynthesis, signal transduction, action. Springer Netherlands, Dordrecht, pp 1–15. https://doi.org/10.1007/978-1-4020-2686-7_1


Debellé F (2020) The common symbiotic signaling pathway. In The Model Legume Medicago truncatula. pp 523–528. https://doi.org/10.1002/9781119409144.ch64


del Cerro P, Cook NM, Huisman R, Dangeville P, Grubb LE, Marchal C et al (2022) Engineered CaM2 modulates nuclear calcium oscillation and enhances legume root nodule symbiosis. Proc Natl Acad Sci 119(13):e2200099119. https://doi.org/10.1073/pnas.2200099119


Delavaux CS, Ramos RJ, Sturmer SL, Bever JD (2022) Environmental identification of arbuscular mycorrhizal fungi using the LSU rDNA gene region: an expanded database and improved pipeline. Mycorrhiza 32(2):145–153. https://doi.org/10.1007/s00572-022-01068-3


Devadatha B, Sarma VV (2018) Pontoporeia mangrovei sp. nov, a new marine fungus from an Indian mangrove along with a new geographical and host record of Falciformispora lignatilis. Curr Res Environ Appl Mycol 8:238–246


Diao F, Dang Z, Cui X, Xu J, Jia B, Ding S et al (2021) Transcriptomic analysis revealed distinctive modulations of arbuscular mycorrhizal fungi inoculation in halophyte Suaeda salsa under moderate salt conditions. Environ Exp Bot 183:104337


Dsouza J, Rodrigues BF (2017) Enhancement of growth in mangrove plant (Ceriops tagal) by Rhizophagus clarus. J Plant Nutr 40(3):365–371. https://doi.org/10.1080/01904167.2016.1240197


Duc NH, Vo AT, Haddidi I, Daood H, Posta K (2021) Arbuscular mycorrhizal fungi improve tolerance of the medicinal plant Eclipta prostrata (L.) and induce major changes in polyphenol profiles under salt stresses. Front Plant Sci 11:612299


Etemadi M, Gutjahr C, Couzigou J-M, Zouine M, Lauressergues D, Timmers A et al (2014) Auxin Perception is required for arbuscule development in arbuscular mycorrhizal symbiosis. Plant Physiol 166(1):281–292. https://doi.org/10.1104/pp.114.246595


Evelin H, Kapoor R, Giri B (2009) Arbuscular mycorrhizal fungi in alleviation of salt stress: a review. Ann Bot 104(7):1263–1280. https://doi.org/10.1093/aob/mcp251


Evelin H, Devi TS, Gupta S, Kapoor R (2019) Mitigation of salinity stress in plants by arbuscular mycorrhizal symbiosis: current understanding and new challenges. Front Plant Sci 10:470


Fiorilli V, Wang JY, Bonfante P, Lanfranco L, Al-Babili S (2019) Apocarotenoids: old and new mediators of the arbuscular mycorrhizal symbiosis. Front Plant Sci. https://doi.org/10.3389/fpls.2019.01186


Foo E (2013) Auxin influences strigolactones in pea mycorrhizal symbiosis. J Plant Physiol 170(5):523–528. https://doi.org/10.1016/j.jplph.2012.11.002


Foo E, Ross JJ, Jones WT, Reid JB (2013) Plant hormones in arbuscular mycorrhizal symbioses: an emerging role for gibberellins. Ann Bot 111(5):769–779. https://doi.org/10.1093/aob/mct041


Gaonkar S, Rodrigues BF (2020) Diversity of arbuscular mycorrhizal (AM) fungi in mangroves of Chorao Island, Goa, India. Wetlands Ecol Manage 28(5):765–778. https://doi.org/10.1007/s11273-020-09747-8


Gaonkar S, Rodrigues BF (2021) Arbuscular mycorrhizal fungal status in mangroves of Pichavaram Forest, Tamil Nadu, India. Trop Ecol 62(4):538–548. https://doi.org/10.1007/s42965-021-00167-0


Gerami Z, Lakzian A, Hemati A, Amirifar A, Asgari Lajayer B, van Hullebusch ED (2021) Effect of cadmium on sorghum root colonization by glomeral fungi and its impact on total and easily extractable glomalin production. Environ Sci Pollut Res 28(26):34570–34583. https://doi.org/10.1007/s11356-021-13205-0


Ghosh P (2015) Conservation and conflicts in the sundarban biosphere reserve, India. Geograph Rev 105(4):429–440. https://doi.org/10.1111/j.1931-0846.2015.12101.x


Giri B, Kapoor R, Mukerji KG (2007) Improved tolerance of Acacia nilotica to salt stress by arbuscular mycorrhiza, glomus fasciculatum may be partly related to elevated K/Na ratios in root and shoot tissues. Microb Ecol 54(4):753–760. https://doi.org/10.1007/s00248-007-9239-9


Gobbato E, Marsh JF, Vernié T, Wang E, Maillet F, Kim J et al (2012) A GRAS-type transcription factor with a specific function in mycorrhizal signaling. Curr Biol 22(23):2236–2241. https://doi.org/10.1016/j.cub.2012.09.044


Gopinathan M, Mahesh V, Durgadevi R (2017) Seasonal diversity of AM fungi in mangroves of South East coastal area of Muthupet, India. Int J Mod Res Rev 5:1474–1780


Gosling P, Hodge A, Goodlass G, Bending GD (2006) Arbuscular mycorrhizal fungi and organic farming. Agr Ecosyst Environ 113(1–4):17–35


Guo X, Gong J (2014) Differential effects of abiotic factors and host plant traits on diversity and community composition of root-colonizing arbuscular mycorrhizal fungi in a salt-stressed ecosystem. Mycorrhiza 24(2):79–94. https://doi.org/10.1007/s00572-013-0516-9


Gutjahr C (2014) Phytohormone signaling in arbuscular mycorhiza development. Curr Opin Plant Biol 20:26–34. https://doi.org/10.1016/j.pbi.2014.04.003


Hao S, Su W, Li QQ (2021) Adaptive roots of mangrove Avicennia marina: structure and gene expressions analyses of pneumatophores. Sci Total Environ 757:143994. https://doi.org/10.1016/j.scitotenv.2020.143994


Hayward A, Stirnberg P, Beveridge C, Leyser O (2009) Interactions between Auxin and Strigolactone in shoot branching control. Plant Physiol 151(1):400–412. https://doi.org/10.1104/pp.109.137646


Hill EM, Robinson LA, Abdul-Sada A, Vanbergen AJ, Hodge A, Hartley SE (2018) Arbuscular mycorrhizal fungi and plant chemical defence: effects of colonisation on aboveground and belowground metabolomes. J Chem Ecol 44(2):198–208. https://doi.org/10.1007/s10886-017-0921-1


Hoeksema JD, Bala Chaudhary V, Gehring CA, Johnson NC, Karst J, Koide RT, Pringle A et al (2010) A meta-analysis of context-dependency in plant response to inoculation with mycorrhizal fungi. Ecol Lett 13(3):394–407


Holste EK, Holl KD, Zahawi RA, Kobe RK (2016) Reduced aboveground tree growth associated with higher arbuscular mycorrhizal fungal diversity in tropical forest restoration. Ecol Evol 6(20):7253–7262. https://doi.org/10.1002/ece3.2487


Hongmei Q, Xiaoxuan Z, Wenyue S, Xing Z, Pengfei J, Shanshan H et al (2020) The genomic and transcriptomic foundations of viviparous seed development in mangroves. bioRxiv. https://doi.org/10.1101/2020.10.19.346163


Idris NA, Muhd Zuhir Z, Mohd Radzuan NA, Muda NS, Rosli RI (2019) In vitro response of fungi isolated from orchids in bris, setiu wetland and mangrove in morib, to different concentrations of lead. Malays Appl Biol 48(1):229–233


Jansa J, Forczek ST, Rozmoš M, Püschel D, Bukovská P, Hršelová H (2019) Arbuscular mycorrhiza and soil organic nitrogen: network of players and interactions. Chem Biol Technol Agric 6(1):10. https://doi.org/10.1186/s40538-019-0147-2


Jin Y, Liu H, Luo D, Yu N, Dong W, Wang C et al (2016) DELLA proteins are common components of symbiotic rhizobial and mycorrhizal signalling pathways. Nat Commun 7(1):12433. https://doi.org/10.1038/ncomms12433


Katalin P, Nguyen Hong D (2019) Benefits of arbuscular mycorrhizal fungi application to crop production under water scarcity. In: Gabrijel O (ed) Drought. IntechOpen, Rijeka, p Ch. 10


Kaur S, Suseela V (2020) Unraveling arbuscular mycorrhiza-induced changes in plant primary and secondary metabolome. Metabolites 10(8):335. https://doi.org/10.3390/metabo10080335


Khaliq A, Perveen S, Alamer KH, Zia Ul Haq M, Rafique Z, Alsudays IM, Althobaiti AT, Saleh MA, Hussain S, Attia H (2022) Arbuscular mycorrhizal fungi symbiosis to enhance plant-soil interaction. Sustainability 14:7840. https://doi.org/10.3390/su14137840


Kondhare KR, Patil AB, Giri AP (2021) Auxin: An emerging regulator of tuber and storage root development. Plant Sci 306:110854. https://doi.org/10.1016/j.plantsci.2021.110854


Krishnaiah D, Sarbatly R, Nithyanandam R (2011) A review of the antioxidant potential of medicinal plant species. Food Bioprod Process 89(3):217–233. https://doi.org/10.1016/j.fbp.2010.04.008


Kundu S, Gantait S (2017) Abscisic acid signal crosstalk during abiotic stress response. Plant Gene 11:61–69. https://doi.org/10.1016/j.plgene.2017.04.007


Liao D, Wang S, Cui M, Liu J, Chen A, Xu G (2018) Phytohormones regulate the development of arbuscular mycorrhizal symbiosis. Int J Mol Sci 19(10):3146. https://doi.org/10.3390/ijms19103146


Mano Y, Nemoto K (2012) The pathway of auxin biosynthesis in plants. J Exp Bot 63(8):2853–2872. https://doi.org/10.1093/jxb/ers091


Marinho F, Silva G, Ferreira A, Veras J, Sousa N, Tomio Goto B et al (2014) Bulbospora minima, a new genus and a new species in the Glomeromycetes from semi-arid Northeast Brazil. Sydowia -Horn- 66:313–323. https://doi.org/10.12905/0380.sydowia66(2)2014-0313


Marinho F, Ramalho da Silva I, Oehl F, Maia L (2018) Checklist of arbuscular mycorrhizal fungi in tropical forests. Sydowia -Horn- 70:107–127. https://doi.org/10.12905/0380.sydowia70-2018-0107


Martín-Rodríguez JÁ, Ocampo JA, Molinero-Rosales N, Tarkowská D, Ruíz-Rivero O, García-Garrido JM (2015) Role of gibberellins during arbuscular mycorrhizal formation in tomato: new insights revealed by endogenous quantification and genetic analysis of their metabolism in mycorrhizal roots. Physiol Plant 154(1):66–81. https://doi.org/10.1111/ppl.12274


Miranda JCC, Vilela L, Miranda LN (2005) Dinâmica e contribuição da micorriza arbuscular em sistemas de produção com rotação de culturas. Pesq Agrop Brasileira. https://doi.org/10.1590/S0100-204X2005001000009


Mitra D, Uniyal N, Panneerselvam P, Senapati A, Ganeshamurthy AN (2020) Role of mycorrhiza and its associated bacteria on plant growth promotion and nutrient management in sustainable agriculture. Int J Life Sci Appl Sci 1(1):1–1


Mohanta TK, Bae H (2015) Functional genomics and signaling events in mycorrhizal symbiosis. J Plant Interact 10(1):21–40. https://doi.org/10.1080/17429145.2015.1005180


Müller LM, Harrison MJ (2019) Phytohormones, miRNAs, and peptide signals integrate plant phosphorus status with arbuscular mycorrhizal symbiosis. Curr Opin Plant Biol 50:132–139. https://doi.org/10.1016/j.pbi.2019.05.004


Murray JD, Muni RRD, Torres-Jerez I, Tang Y, Allen S, Andriankaja M et al (2011) Vapyrin, a gene essential for intracellular progression of arbuscular mycorrhizal symbiosis, is also essential for infection by rhizobia in the nodule symbiosis of Medicago truncatula. Plant J 65(2):244–252. https://doi.org/10.1111/j.1365-313X.2010.04415.x


Nethaji Mariappan VE, Asokan HN (2016) A study of water quality status of Mangrove Vegetation in Pichavaram Estaury. J Agric Ecol Res Int 5:1–11. https://doi.org/10.9734/JAERI/2016/16611


Nizam A, Meera SP, Kumar A (2022) Genetic and molecular mechanisms underlying mangrove adaptations to intertidal environments. iScience. https://doi.org/10.1016/j.isci.2021.103547


Normanly J (2010) Approaching cellular and molecular resolution of auxin biosynthesis and metabolism. Cold Spring Harb Perspect Biol 2(1):a001594. https://doi.org/10.1101/cshperspect.a001594


Oehl F, Körner C (2014) Multiple mycorrhization at the coldest place known for Angiosperm plant life. Alp Bot 124(2):193–198. https://doi.org/10.1007/s00035-014-0138-7


Pan J, Peng F, Tedeschi A, Xue X, Wang T, Liao J et al (2020) Do halophytes and glycophytes differ in their interactions with arbuscular mycorrhizal fungi under salt stress? A meta-analysis. Botanical Stud 61:1–13


Petrášek J, Friml JI (2009) Auxin transport routes in plant development. Development 136(16):2675–2688. https://doi.org/10.1242/dev.030353


Pimprikar P, Carbonnel S, Paries M, Katzer K, Klingl V, Bohmer MJ et al (2016) A CCaMK-CYCLOPS-DELLA complex activates transcription of RAM1 to regulate arbuscule branching. Curr Biol 26(8):987–998. https://doi.org/10.1016/j.cub.2016.01.069


Ramírez-Viga T, Guadarrama P, Castillo-Argüero S, Estrada-Medina H, García-Sánchez R, Hernández-Cuevas L et al (2020) Relationship between arbuscular mycorrhizal association and edaphic variables in mangroves of the Coast of Yucatán, Mexico. Wetlands 40(3):539–549. https://doi.org/10.1007/s13157-019-01196-1


Reef R, Feller IC, Lovelock CE (2010) Nutrition of mangroves. Tree Physiol 30(9):1148–1160. https://doi.org/10.1093/treephys/tpq048


Roy S, Chakraborty AP, Chakraborty R (2021) Understanding the potential of root microbiome influencing salt-tolerance in plants and mechanisms involved at the transcriptional and translational level. Physiol Plant 173(4):1657–1681. https://doi.org/10.1111/ppl.13570


Ruiz-Lozano JM, Aroca R, Zamarreño ÁM, Molina S, Andreo-Jiménez B, Porcel R et al (2016) Arbuscular mycorrhizal symbiosis induces strigolactone biosynthesis under drought and improves drought tolerance in lettuce and tomato. Plant Cell Environ 39(2):441–452. https://doi.org/10.1111/pce.12631


Saxena B, Shukla K & Giri B (2017) Arbuscular mycorrhizal fungi and tolerance of salt stress in plants. In: Arbuscular mycorrhizas and stress tolerance of plants, pp 67–97


Sibero MT, Igarashi Y, Radjasa OK, Sabdono A, Trianto A, Zilda DS, Wijaya YJ (2019) Sponge-associated fungi from a mangrove habitat in Indonesia: species composition, antimicrobial activity, enzyme screening and bioactive profiling. Int Aquatic Res 11(2):173–186. https://doi.org/10.1007/s40071-019-0227-8


Sievers M, Chowdhury MR, Adame MF, Bhadury P, Bhargava R, Buelow C et al (2020) Indian Sundarbans mangrove forest considered endangered under Red List of Ecosystems, but there is cause for optimism. Biol Conserv 251:108751. https://doi.org/10.1016/j.biocon.2020.108751


Singh S, Katzer K, Lambert J, Cerri M, Parniske M (2014) CYCLOPS, a DNA-binding transcriptional activator, orchestrates symbiotic root nodule development. Cell Host Microbe 15(2):139–152. https://doi.org/10.1016/j.chom.2014.01.011


Slimani A, Ait-El-Mokhtar M, Ben-Laouane R, Boutasknit A, Anli M, Abouraicha EF, Oufdou K, Meddich A, Baslam M (2024) Molecular and systems biology approaches for harnessing the symbiotic interaction in mycorrhizal symbiosis for grain and oil crop cultivation. Int J Mol Sci 25:912. https://doi.org/10.3390/ijms25020912


Solís-Rodríguez URJ, Ramos-Zapata JA, Hernández-Cuevas L, Salinas-Peba L, Guadarrama P (2020) Arbuscular mycorrhizal fungi diversity and distribution in tropical low flooding forest in Mexico. Mycol Prog 19(3):195–204. https://doi.org/10.1007/s11557-019-01550-x


Sreenivasulu N, Radchuk V, Alawady A, Borisjuk L, Weier D, Staroske N et al (2010) De-regulation of abscisic acid contents causes abnormal endosperm development in the barley mutant seg8. Plant J 64(4):589–603. https://doi.org/10.1111/j.1365-313X.2010.04350.x


Sridhar KR, Roy S & Sudheep NM (2011) Assemblage and diversity of arbuscular mycorrhizal fungi in mangrove plant species of the southwest coast of India. Mangroves Ecol Biol Taxonomy 257–274


Srivastava LM (2002) CHAPTER 7 - Gibberellins. In: Srivastava LM (ed) Plant growth and development. Academic Press, San Diego, pp 171–190


Stürmer SL, Kemmelmeier K (2021) The glomeromycota in the neotropics. Front Microbiol. https://doi.org/10.3389/fmicb.2020.553679


Thatoi H, Behera BC, Mishra RR (2013) Ecological role and biotechnological potential of mangrove fungi: a review. Mycology 4(1):54–71. https://doi.org/10.1080/21501203.2013.785448


Tian W, Wang C, Gao Q, Li L, Luan S (2020) Calcium spikes, waves and oscillations in plant development and biotic interactions. Nature Plants 6(7):750–759. https://doi.org/10.1038/s41477-020-0667-6


Tomio Goto B, Silva G, Assis D, Silva DK, Souza R, Ferreira A et al (2012) Intraornatosporaceae (Gigasporales), a new family with two new genera and two new species. Mycotaxon -Ithaca Ny- 119:117–132. https://doi.org/10.5248/119.117


Tsikou D, Yan Z, Holt DB, Abel NB, Reid DE, Madsen LH et al (2018) Systemic control of legume susceptibility to rhizobial infection by a mobile microRNA. Science 362(6411):233–236


Venkateshwaran M, Cosme A, Han L, Banba M, Satyshur KA, Schleiff E et al (2012) The recent evolution of a symbiotic ion channel in the legume family altered ion conductance and improved functionality in calcium signaling. Plant Cell 24(6):2528–2545. https://doi.org/10.1105/tpc.112.098475


Wahab A, Muhammad M, Munir A, Abdi G, Zaman W, Ayaz A et al (2023) Role of arbuscular mycorrhizal fungi in regulating growth, enhancing productivity, and potentially influencing ecosystems under abiotic and biotic stresses. Plants 12(17):3102


Wang Y, Li T, Li Y, Qiu Q, Li S, Xin G (2015) Distribution of arbuscular mycorrhizal fungi in four semi-mangrove plant communities. Ann Microbiol 65(2):603–610. https://doi.org/10.1007/s13213-014-0896-x


Wang Q, Lu H, Chen J, Jiang Y, Williams MA, Wu S et al (2020) Interactions of soil metals with glomalin-related soil protein as soil pollution bioindicators in mangrove wetland ecosystems. Sci Total Environ 709:136051. https://doi.org/10.1016/j.scitotenv.2019.136051


Wang X-Q, Wang Y-H, Song Y-B, Dong M (2022) Formation and functions of arbuscular mycorrhizae in coastal wetland ecosystems: a review. Ecosyst Health Sustain 8(1):2144465. https://doi.org/10.1080/20964129.2022.2144465


Waters MT, Gutjahr C, Bennett T, Nelson DC (2017) Strigolactone signaling and evolution. Annu Rev Plant Biol 68(1):291–322. https://doi.org/10.1146/annurev-arplant-042916-040925


Wilkinson S, Kudoyarova GR, Veselov DS, Arkhipova TN, Davies WJ (2012) Plant hormone interactions: innovative targets for crop breeding and management. J Exp Bot 63(9):3499–3509. https://doi.org/10.1093/jxb/ers148


Willige BRC, Ghosh S, Nill C, Zourelidou M, Dohmann EMN, Maier A, Schwechheimer C (2007) The DELLA domain of GA INSENSITIVE mediates the interaction with the GA INSENSITIVE DWARF1A gibberellin receptor of arabidopsis. Plant Cell 19(4):1209–1220. https://doi.org/10.1105/tpc.107.051441


Wirsel SGR (2004) Homogenous stands of a wetland grass harbour diverse consortia of arbuscular mycorrhizal fungi. FEMS Microbiol Ecol 48(2):129–138. https://doi.org/10.1016/j.femsec.2004.01.006


Xie X, Weng B, Cai B, Dong Y, Yan C (2014) Effects of arbuscular mycorrhizal inoculation and phosphorus supply on the growth and nutrient uptake of Kandelia obovata (Sheue, Liu & Yong) seedlings in autoclaved soil. Appl Soil Ecol 75:162–171. https://doi.org/10.1016/j.apsoil.2013.11.009


Yang X, Yang Y-N, Xue L-J, Zou M-J, Liu J-Y, Chen F, Xue H-W (2011) Rice ABI5-like1 regulates abscisic acid and auxin responses by affecting the expression of ABRE-containing genes. Plant Physiol 156(3):1397–1409. https://doi.org/10.1104/pp.111.173427


Yoneyama K, Xie X, Kusumoto D, Sekimoto H, Sugimoto Y, Takeuchi Y, Yoneyama K (2007) Nitrogen deficiency as well as phosphorus deficiency in sorghum promotes the production and exudation of 5-deoxystrigol, the host recognition signal for arbuscular mycorrhizal fungi and root parasites. Planta 227(1):125–132. https://doi.org/10.1007/s00425-007-0600-5


Yoneyama K, Mori N, Sato T, Yoda A, Xie X, Okamoto M et al (2018) Conversion of carlactone to carlactonoic acid is a conserved function of MAX1 homologs in strigolactone biosynthesis. New Phytol 218(4):1522–1533. https://doi.org/10.1111/nph.15055


Yoshida T, Fujita Y, Sayama H, Kidokoro S, Maruyama K, Mizoi J et al (2010) AREB1, AREB2, and ABF3 are master transcription factors that cooperatively regulate ABRE-dependent ABA signaling involved in drought stress tolerance and require ABA for full activation. Plant J 61(4):672–685. https://doi.org/10.1111/j.1365-313X.2009.04092.x


Yu H, Liu X, Yang C, Peng Y, Yu X, Gu H et al (2021) Co-symbiosis of arbuscular mycorrhizal fungi (AMF) and diazotrophs promote biological nitrogen fixation in mangrove ecosystems. Soil Biol Biochem 161:108382. https://doi.org/10.1016/j.soilbio.2021.108382


Zhang H-S, Zhou M-X, Zai X-M, Zhao F-G, Qin P (2020) Spatio-temporal dynamics of arbuscular mycorrhizal fungi and soil organic carbon in coastal saline soil of China. Sci Rep 10(1):9781. https://doi.org/10.1038/s41598-020-66976-w


Zhao Y (2010) Auxin biosynthesis and its role in plant development. Annu Rev Plant Biol 61(1):49–64. https://doi.org/10.1146/annurev-arplant-042809-112308


Zipfel C, Oldroyd GED (2017) Plant signalling in symbiosis and immunity. Nature 543(7645):328–336. https://doi.org/10.1038/nature22009

 


Author Information


Department of Microbiology, . Xavier’s College (Autonomous), Kolkata, India