*Article not assigned to an issue yet
Singh Amantika, Singh Pooja, Kashyap Jayant, Tripathi Pooja, Choudhary Krishna Kumar, Sharma Pradeep Kumar, Karmakar Rachan, Shah Maulin P., Tripathi Vijay
Keywords: Antibiotics, Bioremediation, Microalgae, Wastewater, Wastewater treatment
The excessive use of antibiotics and their increasing environmental concentrations is a severe threat and potential hazard to public health. Unfortunately, traditional wastewater treatment technologies aren’t efficient against antibiotic- and other emerging contaminant-rich wastewater. Recently, nature-based methods for wastewater treatment, such as algal-based technologies, have been observed to be viable and capable of the significant bioremediation of antibiotics in wastewater environments. Microalgae, including Scenedesmus quadricauda and Chlorella psychrophile, have already been reported as capable of absorbing and removing tetracycline and azithromycin antibiotics, respectively. Numerous algal species can also remove a significant proportion of different numbers of antibiotics through biodegradation when global wastewater pollution is at a record high. Microalgae may even affect the solubility of antibiotics through hydrolysis, leading to a breakdown of the β-lactam ring structure where present or through the resulting changes in pH, etc. This review provides critical insight into the important factors in removing antibiotic pollution from wastewater and enhancing the removal efficiency.
Abiriga D, Jenkins A, Alfsnes K, Vestgarden LS, Klempe H (2021) Spatiotemporal and seasonal dynamics in the microbial communities of a landfill-leachate contaminated aquifer. FEMS Microbiol Ecol 97(7):fiab086. https://doi.org/10.1093/femsec/fiab086
Adbarzi S, Tripathi P, Kant R, Tripathi V (2020a) Assessment of bacterial diversity and their antibiotic resistance profiles in wastewater treatment plants and their receiving Ganges River in Prayagraj (Allahabad), India. Vegetos 33:744–749. https://doi.org/10.1007/s42535-020-00157-y
Adbarzi SSM, Tripathi P, Choudhary KK, Kant R, Tripathi V (2020b) Assessment of physico-chemical properties of pre and post-treated wastewater of Prayagraj region and its effect on nearby Ganges river. Vegetos 33:258–264. https://doi.org/10.1007/s42535-020-00103-y
Adey WH, Laughinghouse HD IV, Miller JB, Hayek LA, Thompson JG, Bertman S, Hampel K, Puvanendran S (2013) Algal turf scrubber (ATS) floways on the Great Wicomico river, Chesapeake bay: productivity, algal community structure, substrate and chemistry1. J Phycol 49(3):489–501
Ahmad F, Zhu D, Sun J (2021) Environmental fate of tetracycline antibiotics: degradation pathway mechanisms, challenges, and perspectives. Environ Sci Eur 33(1):64
Al-Ghanayem A, Joseph B, Mahdi MB, Scaria B, Saadabi AM (2020) Multidrug resistance pattern of bacteria isolated from fish samples sold in retail market. J Clin Diagn Res. https://doi.org/10.7860/JCDR/2020/42847.13436
Ali J, Wang L, Waseem H, Song B, Djellabi R, Pan G (2020) Turning harmful algal biomass to electricity by microbial fuel cell: a sustainable approach for waste management. Environ Pollut 266:115373
Anabtawi HM, Lee WH, Al-Anazi A, Mohamed MM, Aly Hassan A (2024) Advancements in biological strategies for controlling harmful algal blooms (HABs). Water 16(2):224
Anand U, Reddy B, Singh VK, Singh AK, Kesari KK, Tripathi P, Kumar P, Tripathi V, Simal-Gandara J (2021) Potential environmental and human health risks caused by antibiotic-resistant bacteria (ARB), antibiotic resistance genes (ARGs) and emerging contaminants (ECs) from municipal solid waste (MSW) landfill. Antibiotics 10(4):374. https://doi.org/10.3390/antibiotics10040374
Anderson DM (2009) Approaches to monitoring, control and management of harmful algal blooms (HABs). Ocean Coast Manag 52(7):342–347
Angulo E, Bula L, Mercado I, Montano A, Cubill N (2018a) Bioremediation of cephalexin with non-living Chlorella sp., biomass after lipid extraction. Bioresour Technol 257:17–22. https://doi.org/10.1016/j.biortech.2018.02.079
Angulo E, Bula L, Mercado I, Montano A, Cubillan N (2018b) Bioremediation of cephalexin with non-living Chlorella sp., biomass after lipid extraction. Bioresour Technol 257:17–22. https://doi.org/10.1016/j.biortech.2018.02.079
Anh HQ, Le TPQ, Da Le N, Lu XX, Duong TT, Garnier J, Rochelle-Newall E, Zhang S, Oh N-H, Oeurng C, Ekkawatpanit C, Nguyen TD, Nguyen QT, Nguyen TD, Nguyen TN, Tran TL, Kunisue T, Tanoue R, Takahashi S, Minh TB, Le HT, Pham TNM, Nguyen TAH (2021) Antibiotics in surface water of East and Southeast Asian countries: a focused review on contamination status, pollution sources, potential risks, and future perspectives. Sci Total Environ 64:142865. https://doi.org/10.1016/j.scitotenv.2020.142865
Arora R, Sudhakar K, Rana RS (2024) Photobioreactors for building integration: an overview of designs and architectural potential. Heliyon 10(15):e35168
Ashbolt NJ, Amézquita A, Backhaus T, Borriello P, Brandt KK, Collignon P, Coors A, Finley R, Gaze WH, Heberer T, Lawrence JR, Larsson DG, McEwen SA, Ryan JJ, Schönfeld J, Silley P, Snape JR, Van den Eede C, Topp E (2013) Human health risk assessment (HHRA) for environmental development and transfer of antibiotic resistance. Environ Health Perspect 121(9):993–1001. https://doi.org/10.1289/ehp.1206316
Askari SS, Giri BS, Basheer F, Izhar T, Ahmad SA, Mumtaz N (2024) Enhancing sequencing batch reactors for efficient wastewater treatment across diverse applications: a comprehensive review. Environ Res 260:119656
Aslam B, Wang W, Arshad MI, Khurshid M, Muzammil S, Rasool MH, Nisar MA, Alvi RF, Aslam MA, Qamar MU, Salamat MKF, Baloch Z (2018) Antibiotic resistance: a rundown of a global crisis. Infect Drug Resist 11:1645–1658
Bai XL, Acharya K (2016) Removal of trimethoprim, sulfamethoxazole, and triclosan by the green alga Nannochloris sp. J Hazard Mater 315:70–75. https://doi.org/10.1016/j.jhazmat.2016.04.067
Barancheshme F, Munir M (2018) Strategies to combat antibiotic resistance in the wastewater treatment plants. Front Microbiol 8:2603. https://doi.org/10.3389/fmicb.2017.02603
Basode VK, Abdulhaq A, Alamoudi MUA, Tohari HM, Quhal WA, Madkhali AM, Hobani YH, Hershan AA (2018) Prevalence of a carbapenem-resistance gene (KPC), vancomycin-resistance genes (van A/B) and a methicillin-resistance gene (mecA) in hospital and municipal sewage in a southwestern province of Saudi Arabia. BMC Res Notes 11(1):1–6. https://doi.org/10.1186/s13104-018-3167-2
Ben Y, Fu C, Hu M, Liu L, Wong MH, Zheng C (2019) Human health risk assessment of antibiotic resistance associated with antibiotic residues in the environment: a review. Environ Res 169:483–493. https://doi.org/10.1016/j.envres.2018
Bhatia SK, Mehariya S, Bhatia RK, Kumar M, Pugazhendhi A, Awasthi MK, Yang YH (2021) Wastewater based microalgal biorefinery for bioenergy production: progress and challenges. Sci Total Environ 751:141599
Bodin H, Daneshvar A, Gros M, Hultberg M (2016) Effects of biopellets composed of microalgae and fungi on pharmaceuticals present at environmentally relevant levels in water. Ecol Eng 91:169–172. https://doi.org/10.1016/j.ecoleng.2016.02.007
Bolognesi S, Cecconet D, Callegari A, Capodaglio AG (2021) Combined microalgal photobioreactor/microbial fuel cell system: performance analysis under different process conditions. Environ Res 192:110263
Bruni E, Simonetti G, Bovone B, Casagrande C, Castellani F, Riccardi C, Pomata D, Di Filippo P, Federici E, Buiarelli F, Uccelletti D (2020) Evaluation of bioaerosol bacterial components of a wastewater treatment plant through an integrate approach and in vivo assessment. Int J Environ Res Public Health 17(1):273. https://doi.org/10.3390/ijerph17010273
Butaye P, Devriese LA, Haesebrouck F (2003) Antimicrobial growth promoters used in animal feed: effects of less well known antibiotics on gram-positive bacteria. Clin Microbiol Rev 16(2):175–188. https://doi.org/10.1128/CMR.16.2.175-188.2003
Caneschi A, Bardhi A, Barbarossa A, Zaghini A (2023) The use of antibiotics and antimicrobial resistance in veterinary medicine, a complex phenomenon: a narrative review. Antibiotics (Basel) 12(3):487. https://doi.org/10.3390/antibiotics12030487
Chen Z, Yao L, Sun F, Zhu Y, Li N, Shen D, Wang M (2021) Antibiotic resistance genes are enriched with prolonged age of refuse in small and medium-sized landfill systems. Environ Res 197:111194. https://doi.org/10.1016/j.envres.2021.111194
Choudhary P, Malik A, Pant KK (2017) Algal biofilm systems: an answer to algal biofuel dilemma. In: Gupta S, Malik A, Bux F (eds) Algal Biofuels. Springer, Cham. https://doi.org/10.1007/978-3-319-51010-1_4
Crane M, Watts C, Boucard T (2006) Chronic aquatic environmental risks from exposure to human pharmaceuticals. Sci Total Environ 367(1):23–41. https://doi.org/10.1016/j.scitotenv.2006.04.010
Cycoń M, Mrozik A, Piotrowska-Seget Z (2019) Antibiotics in the soil environment—degradation and their impact on microbial activity and diversity. Front Microbiol 8(10):338
da Silva Rodrigues DA, da Cunha CCRF, do Espirito Santo DR, de Barros ALC, Pereira AR, de Queiroz Silva S, da Fonseca Santiago A, de Cássia Franco Afonso RJ (2021) Removal of cephalexin and erythromycin antibiotics, and their resistance genes, by microalgae-bacteria consortium from wastewater treatment plant secondary effluents. Environ Sci Pollut Res Int 28:67822–67832. https://doi.org/10.1007/s11356-021-15351-x
Daneshvar E, Zarrinmehr MJ, Hashtjin AM, Farhadian O, Bhatnagar A (2018) Versatile applications of freshwater and marine water microalgae in dairy wastewater treatment, lipid extraction and tetracycline biosorption. Bioresour Technol 268:523–530. https://doi.org/10.1016/j.biortech.2018.08.032
Danquah CA, Minkah PAB, Osei Duah Junior I, Amankwah KB, Somuah SO (2022) Antimicrobial compounds from microorganisms. Antibiotics (Basel) 11(3):285. https://doi.org/10.3390/antibiotics11030285
de Godos I, Munnoz R, Guieysse B (2012) Tetracycline removal during wastewater treatment in high-rate algal ponds. J Hazard Mater 229–230:446–449. https://doi.org/10.1016/j.jhazmat.2012.05.106
Du Y, Zhang S, Guo R, Chen J (2015) Understanding the algal contribution in combined UV-algae treatment to remove antibiotic cefradine. RSC Adv 5(74):59953–59959
Du B, Yang Q, Wang R, Wang R, Wang Q, Xin Y (2019) Evolution of antibiotic resistance and the relationship between the antibiotic resistance genes and microbial compositions under long-term exposure to tetracycline and sulfamethoxazole. Int J Environ Res Public Health 16(23):4681. https://doi.org/10.3390/ijerph16234681
Dudley S, Sun C, Jiang J, Gan J (2018) Metabolism of sulfamethoxazole in Arabidopsis thaliana cells and cucumber seedlings. Environ Pollut 242:1748–1757. https://doi.org/10.1016/j.envpol.2018.07.094
Eheneden I, Wang R, Zhao J (2023) Antibiotic removal by microalgae-bacteria consortium: metabolic pathways and microbial responses. Sci Total Environ 891:164489. https://doi.org/10.1016/j.scitotenv.2023.164489
FAO (2006) Livestock’s long shadow. Food and agriculture organization of the united nations (FAO), Rome
Fleming A (2001) On the antibacterial action of cultures of a penicillium, with special reference to their use in the isolation of B. influenzae 1929. Br J Exp Pathol 79:780–790
Gallardo-Rodríguez JJ, Astuya-Villalón A, Llanos-Rivera A, Avello-Fontalba V, Ulloa-Jofré V (2019) A critical review on control methods for harmful algal blooms. Rev Aquac 11(3):661–684
Garcia-Rodríguez A, Matamoros V, Fontas C, Salvado V (2013) The influence of light exposure, water quality and vegetation on the removal of sulfonamides and tetracyclines: a laboratory-scale study. Chemosphere 90:2297–2302. https://doi.org/10.1016/j.chemosphere.2012.09.092
Gaworecki KM, Klaine SJ (2008) Behavioral and biochemical responses of hybrid striped bass during and after fluoxetine exposure. Aquat Toxicol 88(4):207–213. https://doi.org/10.1016/j.aquatox.2008.04.011
Ge L, Deng H (2015) Degradation of two fluoroquinolone antibiotics photoinduced by Fe (III)-microalgae suspension in an aqueous solution. Photochem Photobiol Sci 14:693–699
Ghooi RB, Thatte SM (1995) Inhibition of cell wall synthesis–is this the mechanism of action of penicillins? Med Hypotheses 44(2):127–131. https://doi.org/10.1016/0306-9877(95)90085-3
Ghosh S, Das D (2015) Improvement of harvesting technology for algal biomass production. Algal biorefinery: an integrated approach 169–93
Gojkovic Z, Lindberg RH, Tysklind M, Funk C (2019) Northern green algae have the capacity to remove active pharmaceutical ingredients. Ecotoxicol Environ Saf 170:644–656. https://doi.org/10.1016/j.ecoenv.2018.12.032
Granéli E, Weberg M, Salomon PS (2008) Harmful algal blooms of allelopathic microalgal species: the role of eutrophication. Harmful Algae 8(1):94–102
Grimes KL, Dunphy LJ, Loudermilk EM, Melara AJ, Kolling GL, Papin JA, Colosi LM (2019) Evaluating the efficacy of an algae-based treatment to mitigate elicitation of antibiotic resistance. Chemosphere 237:124421. https://doi.org/10.1016/j.chemosphere.2019.124421
Guo WQ, Zheng HS, Li S, Du JS, Feng XC, Yin RL, Wu QL, Ren NQ, Chang JS (2016) Removal of cephalosporin antibiotics 7-ACA from wastewater during the cultivation of lipid-accumulating microalgae. Bioresour Technol 221:284–290. https://doi.org/10.1016/j.biortech.2016.09.036
Gupta S, Graham DW, Sreekrishnan TR, Ahammad SZ (2023) Heavy metal and antibiotic resistance in four Indian and UK rivers with different levels and types of water pollution. Sci Total Environ 857:159059. https://doi.org/10.1016/j.scitotenv.2022.159059
Hanna N, Sun P, Sun Q, Li X, Yang X, Ji X, Zou H, Ottoson J, Nilsson LE, Berglund B, Dyar OJ, Tamhankar AJ, Lundborg CS (2018) Presence of antibiotic residues in various environmental compartments of Shandong province in Eastern China: Its potential for resistance development and ecological and human risk. Environ Int 114:131–142. https://doi.org/10.1016/j.envint.2018.02.003
Hendrawan DI, Rinanti A, Fachrul MF, Tazkiaturrizki MA, Marendra SM, Zahra LA (2024) Addressing algal bloom and other ecological issues caused by microalgae biomass conversion technology. Algae as a natural solution for challenges in water-food-energy nexus: toward carbon neutrality. Springer Nature Singapore, Singapore, pp 373–431
Hong PY, Li X, Yang X, Shinkai T, Zhang Y, Wang X, Mackie RI (2012) Monitoring airborne biotic contaminants in the indoor environment of pig and poultry confinement buildings. Environ Microbiol 14:1420–1431. https://doi.org/10.1111/j.1462-2920.2012.02726.x
Ismail MM, Essam TM, Ragab YM, Mourad FE (2016) Biodegradation of ketoprofen using a microalgal–bacterial consortium. Biotechnol Lett 38:1493–1502. https://doi.org/10.1007/s10529-016-2145-9
Jahan E, Nessa A, Hossain MF, Parveen Z (2016) Characteristics of municipal landfill leachate and its impact on surrounding agricultural land. Bangladesh J Sci Ind Res 29(1):31–39. https://doi.org/10.3329/bjsr.v29i1.29755
Jang J, Kim M, Baek S, Shin J, Shin J, Shin SG, Kim YM, Cho KH (2021) Hydrometeorological influence on antibiotic-resistance genes (ARGs) and bacterial community at a recreational beach in Korea. J Hazard Mater 403:123599. https://doi.org/10.1016/j.jhazmat.2020.123599
Jiang L, Yuan X, Zeng G, Wu Z, Liang J (2018) Metal-free efficient photocatalyst for stable visible-light photocatalytic degradation of refractory pollutant. Appl Catal B Environ 221:715–725. https://doi.org/10.1016/j.apcatb.2017.09.059
Kampouris ID, Alygizakis N, Klümper U, Agrawal S, Lackner S, Cacace D, Kunze S, Thomaidis NS, Slobdonik J, Berendonk TU (2022) Elevated levels of antibiotic resistance in groundwater during treated wastewater irrigation associated with infiltration and accumulation of antibiotic residues. J Hazard Mater 423:127155. https://doi.org/10.1016/j.jhazmat.2021.127155
Kesari K, Tripathi P, Tripathi V (2018) Influence of wastewater use in agriculture: advances in human and plant health. Advances in microbial biotechnology, 1st edn. Apple Academic Press, Cham, pp 232–246
Kesari KK, Soni R, Jamal QMS, Tripathi P, Lal JA, Jha NK, Siddiqui MH, Kumar P, Tripathi V, Ruokolainen J (2021) Wastewater treatment and reuse: a review of its applications and health implications. Water Air Soil Pollut 232:208. https://doi.org/10.1007/s11270-021-05154-8
Khan W, Nam JY, Byun S, Kim S, Han C, Kim HC (2020) Emerging investigator series: quaternary treatment with algae-assisted oxidation for antibiotics removal and refractory organics degradation in livestock wastewater effluent. Environ Sci Water Res Technol 6:3262–3275. https://doi.org/10.1039/D0EW00634C
Kiki C, Rashid A, Wang Y, Li Y, Zeng Q, Yu CP, Sun Q (2020) Dissipation of antibiotics by microalgae: kinetics, identification of transformation products and pathways. J Hazard Mater 387:121985. https://doi.org/10.1016/j.jhazmat.2019.121985
Klein EY, Van Boeckel TP, Martinez EM, Pant S, Gandra S, Levin SA, Goossens H, Laxminarayan R (2018) Global increase and geographic convergence in antibiotic consumption between 2000 and 2015. Proc Natl Acad Sci USA 115(15):E3463–E3470. https://doi.org/10.1073/pnas.1717295115
Koch N, Islam NF, Sonowal S, Prasad R, Sarma H (2021) Environmental antibiotics and resistance genes as emerging contaminants: methods of detection and bioremediation. Curr Res Microb Sci 2:100027. https://doi.org/10.1016/j.crmicr.2021.100027
Kraupner N, Ebmeyer S, Bengtsson-Palme J, Fick J, Kristiansson E, Flach CF, Larsson DGJ (2018) Selective concentration for ciprofloxacin resistance in Escherichia coli grown in complex aquatic bacterial biofilms. Environ Int 116:255–268. https://doi.org/10.1016/j.envint.2018.04.029
Krzeminski P, Tomei MC, Karaolia P, Langenhoff A, Almeida CMR, Felis E, Gritten F, Andersen HR, Fernandes T, Manaia CM, Rizzo L, Fatta-Kassinos D (2019) Performance of secondary wastewater treatment methods for the removal of contaminants of emerging concern implicated in crop uptake and antibiotic resistance spread: a review. Sci Total Environ 648:1052–1081. https://doi.org/10.1016/j.scitotenv.2018.08.130
Kulik K, Lenart-Boroń A, Wyrzykowska K (2023) Impact of antibiotic pollution on the bacterial population within surface water with special focus on mountain rivers. Water 15(5):5. https://doi.org/10.3390/w15050975
Kumar A, Bisht BS, Joshi VD, Singh AK, Talwar A (2010) Physical, chemical and bacteriological study of water from rivers of Uttarakhand. J Hum Ecol 32(3):169. https://doi.org/10.1080/09709274.2010.11906336
Leng L, Wei L, Xiong Q, Xu S, Li W, Lv S, Lu Q, Wan L, Wen Z, Zhou W (2020) Use of microalgae based technology for the removal of antibiotics from wastewater: a review. Chemosphere 238:124680. https://doi.org/10.1016/j.chemosphere.2019.124680
Li H, Pan Y, Wang Z, Chen S, Guo R, Chen J (2015) An algal process treatment combined with the Fenton reaction for high concentrations of amoxicillin and cefradine. RSC Adv 5(122):100775–100782
Li X, Wu S, Yang C, Zeng G (2020) Microalgal and duckweed based constructed wetlands for swine wastewater treatment: a review. Bioresour Technol 318:123858
Liu Y, Guan Y, Gao B, Yue Q (2012) Antioxidant responses and degradation of two antibiotic contaminants in Microcystis aeruginosa. Ecotoxicol Environ Saf 86:23–30. https://doi.org/10.1016/j.ecoenv.2012.09.004
Liu Y, Wang F, Chen X, Zhang J, Gao B (2015) Cellular responses and biodegradation of amoxicillin in Microcystis aeruginosa at different nitrogen levels. Ecotox Environ Safe 111:138–145. https://doi.org/10.1016/j.ecoenv.2014.10.011
Liu C, Tan L, Zhang L, Tian W, Ma L (2021) A review of the distribution of antibiotics in water in different regions of China and current antibiotic degradation pathways. Front Environ Sci 9:692298. https://doi.org/10.3389/fenvs.2021.692298
Llor C, Bjerrum L (2014) Antimicrobial resistance: risk associated with antibiotic overuse and initiatives to reduce the problem. Ther Adv Drug Saf 5(6):229–241. https://doi.org/10.1177/2042098614554919
Lobova TI, Feil EJ, Popova LY (2011) Multiple antibiotic resistance of heterotrophic bacteria isolated from Siberian lakes subjected to differing degrees of anthropogenic impact. Microb Drug Resist 17(4):583–591
Mantovani M, Rossi S, Ficara E, Collina E, Marazzi F, Lasagni M, Mezzanotte V (2024) Removal of pharmaceutical compounds from the liquid phase of anaerobic sludge in a pilot-scale high-rate algae-bacteria pond. Sci Total Environ 908:167881
Manyi-Loh C, Mamphweli S, Meyer E, Okoh A (2018) Antibiotic use in agriculture and its consequential resistance in environmental sources: potential public health implications. Molecules 23(4):795. https://doi.org/10.3390/molecules23040795
Mindlin SZ, Soina VS, Petrova MA, Gorlenko ZhM (2008) Isolation of antibiotic resistance bacterial strains from Eastern Siberia permafrost sediments. Russ J Genet 44(1):27–34
Mitchell SM, Ullman JL, Teel AL, Watts RJ (2014) PH and temperature effects on the hydrolysis of three b-lactam antibiotics: ampicillin, cefalotin and cefoxitin. Sci Total Environ 466–467:547–555. https://doi.org/10.1016/j.scitotenv.2013.06.027
Naeem N, Sarfraz W, Khalid N, Rizvi ZF, Nazir A, Ejaz U, Amjad N, Safdar L, Amanat R, Akhtar S, Ditta A (2024) Factors affecting the remediation of wastewater worldwide through eco-technologies. InBio-organic amendments for heavy metal remediation pp. 21–31.
Naghdi M, Taheran M, Brar SK, Kermanshahi-pour A, Verma M, Surampalli RY (2018) Removal of pharmaceutical compounds in water and wastewater using fungal oxidoreductase enzymes. Environ Pollut 234:190e213. https://doi.org/10.1016/j.envpol.2017.11.060
Narciso-da-Rocha C, Varela AR, Schwartz T, Nunes OC, Manaia CM (2014) blaTEM and vanA as indicator genes of antibiotic resistance contamination in a hospital–urban wastewater treatment plant system. J Glob Antimicrob Resist 2:309–315. https://doi.org/10.1016/j.jgar.2014.10.001
Norvill ZN, Shilton A, Guieysse B (2016) Emerging contaminant degradation and removal in algal wastewater treatment ponds: identifying the research gaps. J Hazard Mater 313:291–309. https://doi.org/10.1016/j.jhazmat.2016.03.085
Norvill ZN, Toledo-Cervantes A, Blanco S, Shilton A, Guieysse B, Munoz R (2017) Photodegradation and sorption govern tetracycline removal during wastewater treatment in algal ponds. Bioresour Technol 232:35–43. https://doi.org/10.1016/j.biortech.2017.02.011
Nwankwegu AS, Li Y, Huang Y, Wei J, Norgbey E, Sarpong L, Lai Q, Wang K (2019) Harmful algal blooms under changing climate and constantly increasing anthropogenic actions: the review of management implications. 3 Biotech 9:1–9
Osińska A, Korzeniewska E, Harnisz M, Niestępski S (2017) The prevalence and characterization of antibiotic-resistant and virulent Escherichia coli strains in the municipal wastewater system and their environmental fate. Sci Total Environ 577:367–375. https://doi.org/10.1016/j.scitotenv.2016.10.203
Oswald WJ, Gotaas HB, Golueke CG, Kellen WR, Gloyna EF, Hermann ER (1957) Algae in waste treatment [with discussion]. Sewage Ind Wastes 29(4):437–457
Paerl HW, Otten TG (2013) Harmful cyanobacterial blooms: causes, consequences, and controls. Microb Ecol 65:995–1010
Paerl HW, Xu H, Hall NS, Rossignol KL, Joyner AR, Zhu G, Qin B (2015) Nutrient limitation dynamics examined on a multi-annual scale in Lake Taihu, China: implications for controlling eutrophication and harmful algal blooms. J Freshw Ecol 30(1):5–24
Pal AK, Tripathi V, Kumar P, Kumar P (2021) Microbial production of biomethane from digested waste and its significance. Bioprospecting of microorganism-based industrial molecules, 1st edn. Wiley, New York, pp 242–253. https://doi.org/10.1002/9781119717317.ch12
Papajová I, Šmigová J, Gregová G, Šoltys J, Venglovský J, Papaj J, Szabóová T, Dančová N, Ihnacik L, Schusterová I, Sušinková J (2022) Effect of wastewater treatment on bacterial community, antibiotic-resistant bacteria and endoparasites. Int J Environ Res Public Health 19(5):2750
Pei R, Cha J, Carlson KH, Pruden A (2007) Response of antibiotic resistance genes (ARG) to biological treatment in dairy lagoon water. Environ Sci Technol 41:5108–5113. https://doi.org/10.1021/es070051x
Peng M, Salaheen S, Biswas D (2014) Animal health: global antibiotic issues. Encyclop Agric Food Syst. https://doi.org/10.1016/B978-0-444-52512-3.00187-X
Pokharel S, Shrestha P, Adhikari B (2020) Antimicrobial use in food animals and human health: time to implement ‘One Health’ approach. Antimicrob Resist Infect Control 9:181. https://doi.org/10.1186/s13756-020-00847-x
Prata JC, Lavorante BRBO, da Maria CBSMM, Guilhermino L (2018) Influence of microplastics on the toxicity of the pharmaceuticals procainamide and doxycycline on the marine microalgae Tetraselmis chuii. Aquat Toxicol 197:143–152. https://doi.org/10.1016/j.aquatox.2018.02.015
Priyadharshini SD, Palanisamy SB, Manikandan S, Subbaiya R, Govarthanan M, Karmegam N (2021) Phycoremediation of wastewater for pollutant removal: a green approach to environmental protection and long-term remediation. Environ Pollut 290:117989. https://doi.org/10.1016/j.envpol.2021.117989
Quinn B, Gagné F, Blaise C (2008) An investigation into the acute and chronic toxicity of eleven pharmaceuticals (and their solvents) found in wastewater effluent on the cnidarian. Hydra Attenuata Sci Total Environ 389(2–3):306–314. https://doi.org/10.1016/j.scitotenv.2007.08.038
Quinto EJ, Caro I, Villalobos-Delgado LH, Mateo J, De-Mateo-Silleras B, Redondo-Del-Río MP (2019) Food safety through natural antimicrobials. Antibiotics 8(4):208. https://doi.org/10.3390/antibiotics8040208
Ravi NK, Pal AK, Soni R, Tripathi P, Singhal A, Jha PK, Tripathi V (2022) Assessment of antibiotic resistance profile of bacteria isolated from Ghaghara River. India Water Supply 22(11):8080–8091. https://doi.org/10.2166/ws.2022.365
Reda RM, Ibrahim RE, Ahmed ENG, El-Bouhy ZM (2013) Effect of oxytetracycline and florfenicol as growth promoters on the health status of cultured Oreochromis niloticus. Egypt J Aquat Res 39(4):241–248. https://doi.org/10.1016/j.ejar.2013.12.001
Reddy CN, Nguyen HT, Noori MT, Min B (2019) Potential applications of algae in the cathode of microbial fuel cells for enhanced electricity generation with simultaneous nutrient removal and algae biorefinery: current status and future perspectives. Bioresour Technol 292:122010
Rorat A, Courtois P, Vandenbulcke F, Lemiere S (2019) Sanitary and environmental aspects of sewage sludge management. Industrial and municipal sludge, emerging concerns and scope for resource recovery, 1st edn. Elsevier, Butterworth-Heinemann, pp 155–180. https://doi.org/10.1016/B978-0-12-815907-1.00008-8
Sanderson H, Johnson DJ, Reitsma T, Brain RA, Wilson CJ, Solomon KR (2004) Ranking and prioritization of environmental risks of pharmaceuticals in surface waters. Regul Toxicol Pharmacol 39(2):158–183. https://doi.org/10.1016/j.yrtph.2003.12.006
Sankaran S, Khanal SK, Jasti N, Jin B, Pometto AL III, Van Leeuwen JH (2010) Use of filamentous fungi for wastewater treatment and production of high value fungal byproducts: a review. Crit Rev Environ Sci Technol 40(5):400–449. https://doi.org/10.1080/10643380802278943
Santaeufemia S, Torres E, Mera R, Abalde J (2016) Bioremediation of oxytetracycline in seawater by living and dead biomass of the microalga Phaeodactylum tricornutum. J Hazard Mater 320:315–325. https://doi.org/10.1016/j.jhazmat.2016.08.042
Senta I, Terzic S, Ahel M (2013) Occurrence and fate of dissolved and particulate antimicrobials in municipal wastewater treatment. Water Res 47(2):705–714. https://doi.org/10.1016/j.watres.2012.10.041
Sheng GP, Yu HQ, Li XY (2010) Extracellular polymeric substances (EPS) of microbial aggregates in biological wastewater treatment systems: a review. Biotechnol Adv 28(6):882–894. https://doi.org/10.1016/j.biotechadv.2010.08.001
Shukla M, Kumar S (2018) Algal growth in photosynthetic algal microbial fuel cell and its subsequent utilization for biofuels. Renew Sustain Energy Rev 82:402–414
Silva A, Delerue-Matos C, Figueiredo SA, Freitas OM (2019) The use of algae and fungi for removal of pharmaceuticals by bioremediation and biosorption processes: a review. Water 11(8):1555. https://doi.org/10.3390/w11081555
Silveira EO, Lutterbeck CA, Machado ÊL, Rodrigues LR, Rieger A, Beckenkamp F, Lobo EA (2020) Biomonitoring of urban wastewaters treated by an integrated system combining microalgae and constructed wetlands. Sci Total Environ 705:135864
Singh AW, Soni R, Pal AK, Tripathi P, Lal JA, Tripathi V (2023) Microalgal-based bioremediation of emerging contaminants in wastewater a sustainable approach. Microbial bioprocesses applications and perspectives progress in biochemistry and biotechnology, 1st edn. Elsevier, Cham, pp 275–297
Song C, Wei Y, Qiu Y, Qi Y, Li Y, Kitamura Y (2019) Biodegradability and mechanism of florfenicol via Chlorella sp. UTEX1602 and L38: experimental study. Bioresour Technol 272:529–534. https://doi.org/10.1016/j.biortech.2018.10.080
Soni R, Pal AK, Tripathi P, Lal JA, Kesari K, Tripathi V (2020) An overview of nanoscale materials on the removal of wastewater contaminants. Appl Water Sci 10:189. https://doi.org/10.1007/s13201-020-01275-3
Soni R, Pal AK, Tripathi P, Jha PK, Tripathi V (2022) Physicochemical analysis of wastewater discharge and impact on Ganges River of major cities of North India. Water Supply 22(6):6157–6178. https://doi.org/10.2166/ws.2022.185
Stravs MA, Pomati F, Hollender J (2017) Exploring micropollutant biotransformation in three freshwater phytoplankton species. Environ Sci Process Impacts 19:822–832. https://doi.org/10.1039/C7EM00100B
Sun M, Lin H, Guo W, Zhao F, Li J (2017) Bioaccumulation and biodegradation of sulfamethazine in Chlorella pyrenoidosa. J Ocean Univ China 16:1167–1174. https://doi.org/10.1007/s11802-017-3367-8
Sutherland DL, Ralph PJ (2019) Microalgal bioremediation of emerging contaminants-opportunities and challenges. Water Res 164:114921. https://doi.org/10.1016/j.watres.2019.114921
Tan X, Liu Y, Zeng G, Wang X, Hu X, Gu Y, Yang Z (2015) Application of biochar for the removal of pollutants from aqueous solutions. Chemosphere 125:70–85. https://doi.org/10.1016/j.chemosphere.2014.12.058
Teng C, Zhou K, Peng C, Chen W (2021) Characterization and treatment of landfill leachate: a review. Water Res 203:117525. https://doi.org/10.1016/j.watres.2021.117525
Tong CY, Honda K, Derek CJ (2023) A review on microalgal-bacterial co-culture: the multifaceted role of beneficial bacteria towards enhancement of microalgal metabolite production. Environ Res 228:115872
Torres MA, Barros MP, Campos SC, Pinto E, Rajamani S, Sayre RT, Colepicolo P (2008) Biochemical biomarkers in algae and marine pollution: a review. Ecotoxicol Environ Saf 71(1):1–15. https://doi.org/10.1016/j.ecoenv.2008.05.009
Tripathi V, Cytryn E (2017) Impact of anthropogenic activities on the dissemination of antibiotic resistance across ecological boundaries. Essays Biochem 61(1):11–21. https://doi.org/10.1042/EBC20160054
Tripathi V, Tripathi P (2018) Antibiotic resistance genes: an emerging environmental pollutants. Perspect Environ Toxicol Environ Sci Eng. https://doi.org/10.1007/978-3-319-46248-6_9
Truong HB, Hong T, Tran QB, Lam VS, Nguyen TT, Nguyen XC (2024) Algae-constructed wetland integrated system for wastewater treatment: a review. Bioresour Technol 13:1003
Tsuda H, Yamashita Y, Shibata Y, Nakano Y, Koga T (2002) Genes involved in bacitracin resistance in streptococcus mutans. Antimicrob Agents Chemother 46:3756. https://doi.org/10.1128/AAC.46.12.3756-3764.2002
Van TTH, Yidana Z, Smooker PM, Coloe PJ (2020) Antibiotic use in food animals worldwide, with a focus on Africa: pluses and minuses. J Glob Antimicrob Resist 20:170–177. https://doi.org/10.1016/j.jgar.2019.07.031
Varela AR, Ferro G, Vredenburg J, Yanık M, Vieira L, Rizzo L, Lameiras C, Manaia CM (2013) Vancomycin resistant enterococci: from the hospital effluent to the urban wastewater treatment plant. Sci Total Environ 450–451:155–161. https://doi.org/10.1016/j.scitotenv.2013.02.015
Voukkali I, Papamichael I, Loizia P, Zorpas AA (2024) Urbanization and solid waste production: prospects and challenges. Environ Sci Pollut Res 31:17678–17689. https://doi.org/10.1007/s11356-023-27670-2
Wang XH, Lin AYC (2012) Phototransformation of cephalosporin antibiotics in an aqueous environment result in higher toxicity. Environ Sci Technol 46:12417–12426. https://doi.org/10.1021/es301929e
Wang Y, Liu J, Kang D, Wu C, Wu Y (2017) Removal of pharmaceuticals and personal care products from wastewater using algae-based technologies: a review. Rev Environ Sci Biotechnol 16:717–735. https://doi.org/10.1007/s11157-017-9446-x
Wang S, Poon K, Cai Z (2018) Removal and metabolism of triclosan by three different microalgal species in aquatic environment. J Hazard Mater 342:643–650. https://doi.org/10.1016/j.jhazmat.2017.09.004
Wang P, Wu D, You X, Li W, Xie B (2019) Distribution of antibiotics, metals and antibiotic resistance genes during landfilling process in major municipal solid waste landfills. Environ Pollut 255(Pt 2):113222. https://doi.org/10.1016/j.envpol.2019.113222
Wang X, Dou X, Wu J, Meng F (2021) Attenuation pathways of erythromycin and biochemical responses related to algal growth and lipid synthesis in a microalga-effluent system. Environ Res 195:110873. https://doi.org/10.1016/j.envres.2021.110873
Wise R (2002) Antimicrobial resistance: priorities for action. J Antimicrob Chemother 49:585–586. https://doi.org/10.1093/jac/49.4.585
Xiao G, Chen J, Show PL, Yang Q, Ke J, Zhao Q, Guo R, Liu Y (2021) Evaluating the application of antibiotic treatment using algae-algae/activated sludge system. Chemosphere 282:130966. https://doi.org/10.1016/j.chemosphere.2021.130966
Xie P, Ho SH, Peng J, Xu XJ, Chen C, Zhang ZF, Lee DJ, Ren NQ (2019) Dual purpose microalgae-based biorefinery for treating pharmaceuticals and personal care products (PPCPs) residues and biodiesel production. Sci Total Environ 688:253–261. https://doi.org/10.1016/j.scitotenv.2019.06.062
Xie P, Chen C, Zhang C, Su G, Ren N, Ho SH (2020) Revealing the role of adsorption in ciprofloxacin and sulfadiazine elimination routes in microalgae. Water Res 172:115475. https://doi.org/10.1016/j.watres.2020.115475
Xiong JQ, Kurade MB, Abou-Shanab RA, Ji MK, Choi J, Kim JO, Jeon BH (2016) Biodegradation of carbamazepine using freshwater microalgae Chlamydomonas mexicana and Scenedesmus obliquus and the determination of its metabolic fate. Bioresour Technol 205:183–190. https://doi.org/10.1016/j.biortech.2016.01.038
Xiong JQ, Kurade MB, Jeon BH (2017) Biodegradation of levofloxacin by an acclimated freshwater microalga, Chlorella vulgaris. Chem Eng J 313:1251–1257. https://doi.org/10.1016/j.cej.2016.11.017
Xiong JQ, Kurade MB, Patil DV, Jang M, Paeng KJ, Jeon BH (2017b) Biodegradation and metabolic fate of levofloxacin via a freshwater green alga, Scenedesmus obliquus in synthetic saline wastewater. Algal Res 25:54–61. https://doi.org/10.1016/j.algal.2017.04.012
Xiong JQ, Kurade MB, Jeon BH (2018) Can microalgae remove pharmaceutical contaminants from water? Trends in Biotechnol 36(1):30–44. https://doi.org/10.1016/j.tibtech.2017.09.003
Xiong JQ, Kim SJ, Kurade MB, Govindwar S, Abou-Shanab RAI, Kim JR, Roh HS, Khan MA, Jeon BH (2018b) Combined effects of sulfamethazine and sulfamethoxazole on a freshwater microalga, Scenedesmus obliquus: toxicity, biodegradation, and metabolic fate. J Hazard Mater 370:138–146. https://doi.org/10.1016/j.jhazmat.2018.07.049
Xiong Q, Liu YS, Hu LX, Shi ZQ, Cai WW, He LY, Ying GG (2020) Co-metabolism of sulfamethoxazole by a freshwater microalga Chlorella pyrenoidosa. Water Res 175:115656. https://doi.org/10.1016/j.watres.2020.115656
Xiong Q, Hu LX, Liu YS, Zhao JL, He LY, Ying GG (2021) Microalgae-based technology for antibiotics removal: from mechanisms to application of innovational hybrid systems. Environ Int 155:106594. https://doi.org/10.1016/j.envint.2021.106594
Xu X, Li C, Li J, Wang F, Zhou S (2024) The enhancement of wastewater purification efficiency in ecological floating bed aquaculture through alginate oligosaccharide treatment. Aquac Int 1–8.
Yang K, Lu J, Jiang W, Jiang C, Chen J, Wang Z, Guo R (2017) An integrated view of the intimate coupling UV irradiation and algal treatment on antibiotic: Compatibility, efficiency and microbic impact assessment. J Environ Chem Eng 5(5):4262–4268
Yang Q, Gao Y, Ke J, Show PL, Ge Y, Liu Y, Guo R, Chen J (2021) Antibiotics: an overview on the environmental occurrence, toxicity, degradation, and removal methods. Bioengineered 12(1):7376–7416
Yao L, Li Y, Li Z, Shen D, Feng H, Zhou H, Wang M (2020) Prevalence of fluoroquinolone, macrolide and sulfonamide-related resistance genes in landfills from East China, mainly driven by MGEs. Ecotoxicol Environ Saf 190:110131. https://doi.org/10.1016/j.ecoenv.2019.110131
Yu Y, Zhou Y, Wang Z, Torres OL, Guo R, Chen J (2017) Investigation of the removal mechanism of antibiotic ceftazidime by green algae and subsequent microbic impact assessment. Sci Rep 7(1):4168. https://doi.org/10.1038/s41598-017-04128-3
Yu X, Sui Q, Lyu S, Zhao W, Liu J, Cai Z, Yu G, Barcelo D (2020) Municipal solid waste landfills: an underestimated source of pharmaceutical and personal care products in the water environment. Environ Sci Technol 54(16):9757–9768. https://doi.org/10.1021/acs.est.0c00565
Zalewska M, Błażejewska A, Czapko A, Popowska M (2021) Antibiotics and antibiotic resistance genes in animal manure-consequences of its application in agriculture. Front Microbiol 12:610656. https://doi.org/10.3389/fmicb.2021.610656
Zhang Y, Marrs CF, Simon C, Xi C (2009) Wastewater treatment contributes to selective increase of antibiotic resistance among Acinetobacter spp. Sci Total Environ 407:3702–3706. https://doi.org/10.1016/j.scitotenv.2009.02.013
Zhang J, Fu D, Wu J (2012) Photodegradation of Norfloxacin in aqueous solution containing algae. J Environ Sci 24:743–749. https://doi.org/10.1016/S1001-0742(11)60814-0
Zhang XH, Xu YB, He XL, Huang L, Ling JY, Zheng L, Du QP (2016) Occurrence of antibiotic resistance genes in landfill leachate treatment plant and its effluent-receiving soil and surface water. Environ Pollut 218:1255–1261. https://doi.org/10.1016/j.envpol.2016.08.081
Zhang C, Li S, Ho SH (2021) Converting nitrogen and phosphorus wastewater into bioenergy using microalgae-bacteria consortia: a critical review. Bioresour Technol 342:126056
Zhang T, El-Sayed WM, Zhang J, He L, Bruns MA, Wang M (2024) Insight into the impact of air flow rate on algal-bacterial granules: reactor performance, hydrodynamics by computational fluid dynamics (CFD) and microbial community analysis. Bio Rxiv 2024-04
Zhao Z, Song X, Wang Y, Wang D, Wang S, He Y, Wang J (2016) Effects of algal ponds on vertical flow constructed wetlands under different sewage application techniques. Ecol Eng 93:120–128
Zheng S, Wang Y, Chen C, Zhou X, Liu Y, Yang J, Geng Q, Chen G, Ding Y, Yang F (2022) Current progress in natural degradation and enhanced removal techniques of antibiotics in the environment: a review. Int J Environ Res Public Health 19(17):10919
Department of Botany, Mahila Mahavidyalaya, Banaras Hindu University, Varanasi, India