Mycorrhizal fungi and chicken manure: a sustainable strategy for cucumber plant productivity and quality

*Article not assigned to an issue yet

, , , , , , ,


Research Articles | Published:

E-ISSN: 2229-4473.
Website: www.vegetosindia.org
Pub Email: contact@vegetosindia.org
DOI: 10.1007/s42535-025-01173-6
First Page: 0
Last Page: 0
Views: 1757

Keywords: n Cucumis sativusn , Plant-microbe interaction, Soil amendment, Biochemicals, Human health


Abstract


The global demand for sustainable agricultural practices that enhance economic production while minimizing environmental impact is increasingly evident, particularly in cultivating healthy and nutritious cucumber fruits. Cucumbers are widely consumed fresh and are rich in vitamins, minerals, and antioxidants. This study investigates the effects of arbuscular mycorrhizal fungi (AMF) and chicken manure (ChM), both individually and in combination, as a natural strategy for sustainable cucumber production. In this experiment, AMF (10 g/plant) and various doses of ChM (0, 4, 8, and 12 ton/ha) were applied to assess their effects on the productivity and quality of cucumber plants. AMF application significantly enhanced carotenoid, total phenolic content (TPC) (208.31 µg GAE/g FW), total flavonoid content (TFC) (3.95 µg QE/g FW), nitrogen (3.23%), and phosphorus (1.40%) levels. The integration of AMF with ChM 8 ton/ha produced optimal results for chlorophyll pigments in both leaves (103.17 SPAD) and fruits (a-2.39 and b-1.22 µg/g FM), as well as for root length (37.05 cm), root number (22.05), average fruit weight (121.59 g), and iron (231.00 ppm). Additionally, the co-application of AMF with ChM 12 ton/ha resulted in the highest values in stem diameter (15.14 mm), dry matter content in leaves (20.74%) and fruits (3.21%), fruit number per plant (34.67), fruit weight (4.11 kg), and total antioxidant activity (TAA) (5.85 µg/g FW). These findings suggest that the combination of AMF and ChM offers a viable approach to sustainably cultivating cucumber fruits under greenhouse conditions.

n                     Cucumis sativusn                  , Plant-microbe interaction, Soil amendment, Biochemicals, Human health


References


Abdullahi R, Lihan S, Edward R (2015) Effect of arbuscular mycorrhizal fungi and poultry manure on growth and nutrients uptake by maize under field condition. IJAIR 4(1):158–163


Adinde J, Uche O, Anieke U, Odom I, Igwe J, Akor C (2021) Profitability of the use of poultry manure for cucumber (Cucumis sativus L.) production in Iwollo, Southeastern Nigeria. J Agric Sci Pract 6(5):165–173. https://doi.org/10.31248/JASP2021.315


Ahamad L, Bhat AH, Kumar H, Rana A, Hasan MN, Ahmed I, Ahmed S, Machado RA, Ameen F (2023) From soil to plant: strengthening carrot defenses against Meloidogyne incognita with vermicompost and arbuscular mycorrhizal fungi biofertilizers. Front Microbiol 14:1206217. https://doi.org/10.3389/fmicb.2023.1206217


Ahmed GO, Halshoy HS, Mahmood CH, Hama JR (2024) Titanium nanoparticle and humic acid applications improve seed germination, growth development, and phytochemical contents of lettuce (Lactuca Sativa) plants. BioNanoScience 14:4930–4941. https://doi.org/10.1007/s12668-024-01545-3


Alkharpotly A, Shehata M, Abd El Rasheed K (2019) The performance of cucumber plants (Cucumis sativus L.) as affected by organic and NPK mineral fertilization under plastic houses conditions at arid region. J Plant Prod 10(7):551–558. https://doi.org/10.21608/jpp.2019.53552


Aritonang SP, Panjaitan E, Tondang FP (2018) Cucumber plants (Cucumis sativus L.) growth and crop yield of chicken manure fertilized with plant spacing. In IOP Conference Series: Earth and Environmental Science (130 (1): 012045). IOP Publishing. https://doi.org/10.1088/1755-1315/130/1/012045


Bargaz A, Lyamlouli K, Chtouki M, Zeroual Y, Dhiba D (2018) Soil microbial resources for improving fertilizers efficiency in an integrated plant nutrient management system. Front Microbiol 9:1606. https://doi.org/10.3389/fmicb.2018.01606


Baslam M, Esteban R, García-Plazaola JI, Goicoechea N (2013) Effectiveness of arbuscular mycorrhizal fungi (AMF) for inducing the accumulation of major carotenoids, chlorophylls and tocopherol in green and red leaf lettuces. Appl Microbiol Biotechnol 97:3119–3128. https://doi.org/10.1007/s00253-012-4526-x


Baum C, El-Tohamy W, Gruda N (2015) Increasing the productivity and product quality of vegetable crops using arbuscular mycorrhizal fungi: a review. Sci Hortic 187:131–141. https://doi.org/10.1016/j.scienta.2015.03.002


Begum N, Qin C, Ahanger MA, Raza S, Khan MI, Ashraf M, Ahmed N, Zhang L (2019) Role of arbuscular mycorrhizal fungi in plant growth regulation: implications in abiotic stress tolerance. Front Plant Sci 10:1068. https://doi.org/10.3389/fpls.2019.01068


Boldt K, Pörs Y, Haupt B, Bitterlich M, Kühn C, Grimm B, Franken P (2011) Photochemical processes, carbon assimilation and RNA accumulation of sucrose transporter genes in tomato arbuscular mycorrhiza. J Plant Physiol 168(11):1256–1263. https://doi.org/10.1016/j.jplph.2011.01.026


Bona E, Cantamessa S, Massa N, Manassero P, Marsano F, Copetta A, Lingua G, D’Agostino G, Gamalero E, Berta G (2017) Arbuscular mycorrhizal fungi and plant growth-promoting pseudomonads improve yield, quality and nutritional value of tomato: a field study. Mycorrhiza 27:1–11. https://doi.org/10.1007/s00572-016-0727-y


Borie F, Rubio R, Morales A (2008) Arbuscular mycorrhizal fungi and soil aggregation. J Soil Sci Plant Nutr 8(2):9–18


Bulgarelli RG, Marcos FCC, Ribeiro RV, de Andrade SAL (2017) Mycorrhizae enhance nitrogen fixation and photosynthesis in phosphorus-starved soybean (Glycine max L. Merrill). Environ Exp Bot 140:26–33. https://doi.org/10.1016/j.envexpbot.2017.05.015


Cavagnaro TR, Bender SF, Asghari HR, van der Heijden MG (2015) The role of arbuscular mycorrhizas in reducing soil nutrient loss. Trends Plant Sci 20(5):283–290. https://doi.org/10.1016/j.tplants.2015.03.004


Chapagain U, Bhandari S, Shrestha YM, Bista S, Dahal J (2022) Effect of pruning and fertilizers on growth, flowering and yield of cucumber (Cucumis sativus L.) under protected structure in Panchthar, Nepal. Int J Appl Sci Biotechnol 10(3):171–181. https://doi.org/10.3126/ijasbt.v10i3.47521


Chatzistathis T, Orfanoudakis M, Alifragis D, Therios I (2013) Colonization of Greek olive cultivars’ root system by arbuscular mycorrhiza fungus: root morphology, growth, and mineral nutrition of olive plants. Sci Agric 70:185–194. https://doi.org/10.1590/S0103-90162013000300007


Chen S, Zhao H, Zou C, Li Y, Chen Y, Wang Z, Jiang Y, Liu A, Zhao P, Wang M (2017) Combined inoculation with multiple arbuscular mycorrhizal fungi improves growth, nutrient uptake and photosynthesis in cucumber seedlings. Front Microbiol 8:2516. https://doi.org/10.3389/fmicb.2017.02516


de Andrade SAL, Domingues AP Jr, Mazzafera P (2015) Photosynthesis is induced in rice plants that associate with arbuscular mycorrhizal fungi and are grown under arsenate and arsenite stress. Chemosphere 134:141–149. https://doi.org/10.1016/j.chemosphere.2015.04.023


Deore G, Limaye A, Shinde B, Laware S (2010) Effect of novel organic liquid fertilizer on growth and yield in Chilli (Capsicum annum L.). Asian J Exp Biol Sci Spl 2010:15–19


Dikinya O, Mufwanzala N (2010) Chicken manure-enhanced soil fertility and productivity: effects of application rates. J Soil Sci Environ Manage 1(3):46–54


Dixit Y, Kar A (2010) Protective role of three vegetable peels in alloxan induced diabetes mellitus in male mice. Plant Foods Hum Nutr 65:284–289. https://doi.org/10.1007/s11130-010-0175-3


Elbon A, Whalen JK (2015) Phosphorus supply to vegetable crops from arbuscular mycorrhizal fungi: a review. Biol Agric Hortic 31(2):73–90. https://doi.org/10.1080/01448765.2014.966147


Elmer P (1996) Analytical methods for atomic absorption spectroscopy. USA: Perkin-Elmer Corporation, 132–142


Etesami H, Jeong BR, Glick BR (2021) Contribution of arbuscular mycorrhizal fungi, phosphate–solubilizing bacteria, and silicon to P uptake by plant. Front Plant Sci 12:699618. https://doi.org/10.3389/fpls.2021.699618


Fattah OA, Mustafa HA (2023) Effect of mycorrhiza with phosphorus on daffodil (Narcissus pseudonarcissus L.) growth in calcareous soil. KUJAS 14(2):9–21. https://doi.org/10.58928/ku23.14202


Ge T, Li B, Zhu Z, Hu Y, Yuan H, Dorodnikov M, Jones DL, Wu J, Kuzyakov Y (2017) Rice rhizodeposition and its utilization by microbial groups depends on N fertilization. Biol Fertil Soils 53:37–48. https://doi.org/10.1007/s00374-016-1155-z


Gerdemann J, Nicolson TH (1963) Spores of mycorrhizal Endogone species extracted from soil by wet sieving and decanting. Trans Br Myco Soc 46(2):235–244


Gough EC, Owen KJ, Zwart RS, Thompson JP (2020) A systematic review of the effects of arbuscular mycorrhizal fungi on root-lesion nematodes, Pratylenchus spp. Front Plant Sci 11:923. https://doi.org/10.3389/fpls.2020.00923


Halshoy HS (2024) Growth, yield, and biochemical traits of tomato plants under mycorrhizal inoculation and licorice root extract applications. J Soil Sci Plant Nutr. https://doi.org/10.1080/00380768.2024.2434832


Halshoy HS, Sadik SK (2024) Impact of training methods and biostimulant applications on sweet pepper (Capsicum annuum) yield and nutritional values: under greenhouse condition. Hortic Plant J. https://doi.org/10.1016/j.hpj.2023.06.008


Halshoy H, Mahmood A, Tofiq G (2023) Effect of plant biostimulants on growth, yield and some mineral composition of broccoli plants (Brassica oleracea var. Italica). Tikrit J Agric Sci 23(1):130–140. https://doi.org/10.25130/tjas.23.1.16


Halshoy HS, Rasul KS, Ahmed HM, Mohammed HA, Mohammed AA, Ibrahim AS, Braim SA (2024) Effect of nano titanium and organic fertilizer on broccoli growth, production, and biochemical profiles. J Plant Nutr. https://doi.org/10.1080/01904167.2024.2442726


Hashem A, Alqarawi AA, Radhakrishnan R, Al-Arjani A-BF, Aldehaish HA, Egamberdieva D, Abd Allah EF (2018) Arbuscular mycorrhizal fungi regulate the oxidative system, hormones and ionic equilibrium to trigger salt stress tolerance in Cucumis sativus L. Saudi J Biol Sci 25(6):1102–1114. https://doi.org/10.1016/j.sjbs.2018.03.009


Hata FT, da Silva DC, Yassunaka-Hata NN, de Queiroz Cancian MA, Sanches IA, Poças CEP, Ventura MU, Spinosa WA, Macedo RB (2023) Leafy vegetables’ agronomic variables, nitrate, and bioactive compounds have different responses to bokashi, mineral fertilization, and boiled chicken manure. Horticulturae 9(2):194. https://doi.org/10.3390/horticulturae9020194


Hyde KD, Xu J, Rapior S, Jeewon R, Lumyong S, Niego AGT, Abeywickrama PD, Aluthmuhandiram JV, Brahamanage RS, Brooks S (2019) The amazing potential of fungi: 50 ways we can exploit fungi industrially. Fungal Divers 97:1–136. https://doi.org/10.1007/s13225-019-00430-9


Ibrahim A, Maduro-Dias C, Halshoy H, Borba A, Nunes H (2024) Optimizing nutritional value and biological profile of non-conventional forages for animal feeding by utilizing sodium hydroxide. Multidisciplinary Sci J 6(11):2024235–2024235. https://doi.org/10.31893/multiscience.2024235


Jandaghi M, Hasandokht MR, Abdossi V, Moradi P (2020) The effect of chicken manure tea and vermicompost on some quantitative and qualitative parameters of seedling and mature greenhouse cucumber. J App Biol Biotech 8(1):33–37. https://doi.org/10.7324/JABB.2020.80106


Joshi R, Singh J, Vig AP (2015) Vermicompost as an effective organic fertilizer and biocontrol agent: effect on growth, yield and quality of plants. Rev Environ Sci Biotechnol 14:137–159. https://doi.org/10.1007/s11157-014-9347-1


Kazemi R, Ronaghi A, Yasrebi J, Ghasemi-Fasaei R, Zarei M (2019) Influence of poultry manure and its biochar, Funneliformis mosseae and salinity stress on corn yield and micronutrients concentration. Iran Agric Res: IAR 38(2):37–46. https://doi.org/10.22099/iar.2019.5458


Khan M, Ullah F, Zainub B, Khan M, Zeb A, Ahmad K, Arshad R (2017) Effects of poultry manure levels on growth and yield of cucumber cultivars. Sci Int (Lahore) 29(6):1381–1386


Kharga S, Sarma P, Warade S, Debnath P, Wangchu L, Singh AK, Simray AG (2019) Effect of integrated nutrient management on growth and yield attributing parameters of cucumber (Cucumis sativus L.) under protected condition. Int J Curr Microbiol App Sci 8(8):1862–1871


Kurepin LV, Zaman M, Pharis RP (2014) Phytohormonal basis for the plant growth promoting action of naturally occurring biostimulators. J Sci Food Agric 94(9):1715–1722. https://doi.org/10.1002/jsfa.6545


Latif SAA, Mustafa HA (2019) Effect of biofertilizers and carbolizer on growth of gerbera plant (Gerbera jamesonii). Plant Arch 19(1):1733–1754


Liu A, Chen S, Wang M, Liu D, Chang R, Wang Z, Lin X, Bai B, Ahammed GJ (2016) Arbuscular mycorrhizal fungus alleviates chilling stress by boosting redox poise and antioxidant potential of tomato seedlings. J Plant Growth Regul 35:109–120. https://doi.org/10.1007/s00344-015-9511-z


Ma J, Janoušková M, Ye L, Bai L, Dong R, Yan Y, Yu X, Zou Z, Li Y, He C (2019) Role of arbuscular mycorrhiza in alleviating the effect of cold on the photosynthesis of cucumber seedlings. Photosynthetica. https://doi.org/10.32615/ps.2019.001


Masarirambi MT, Dlamini P, Wahome PK, Oseni TO (2012) Effects of chicken manure on growth, yield and quality of lettuce (Lactuca sativa L.)‘Taina’under a lath house in a semi-arid sub-tropical environment. Agric Environ Sci 12(3):399–406


Mawarni L, Siahaan M (2022) Effect of chicken manure and pruning on kyuri cucumber plant. IOP Conference Series: Earth and Environmental Science (977(1): 012043). IOP Publishing. https://doi.org/10.1088/1755-1315/977/1/012043


Mohammed A, Mahmood A, Mustafa H, Ahmed T, Omar D, Arkwazee H, Majeed H, Tahir N (2020) Impact of some treatments on seed germination and seedling vigour of kangar (Gundelia Sp. L). Appl Ecol Environ Res. https://doi.org/10.15666/aeer/1806_81598170


Mohammed HA, Aljabary AMAO, Halshoy HS, Hama JR, Rashid HA, Rashid HW (2023) Soil-borne microbes, natural stimulants, and post-harvest treatments alter quality and phytochemicals of tomato fruit. Int J Veg Sci 29(6):544–556. https://doi.org/10.1080/19315260.2023.2272838


Mohammed NT, Halshoy HS, Saed NF, Ali HWR, Mohammed NI, Ali SM (2024) Impact of inorganic fertilizer doses on growth, yield, physical and chemical components of broccoli plants. JKAS 11(4):57–72. https://doi.org/10.59658/jkas.v11i4.2791


Mukherjee PK, Nema NK, Maity N, Sarkar BK (2013) Phytochemical and therapeutic potential of cucumber. Fitoterapia 84:227–236. https://doi.org/10.1016/j.fitote.2012.10.003


Nuccio EE, Hodge A, Pett-Ridge J, Herman DJ, Weber PK, Firestone MK (2013) An arbuscular mycorrhizal fungus significantly modifies the soil bacterial community and nitrogen cycling during litter decomposition. Environ Microbiol 15(6):1870–1881. https://doi.org/10.1111/1462-2920.12081


Oke O, Jatto K, Oyaniyi T, Adewumi O, Adara C, Marizu J, Ogunbela A, Adebayo G (2020) Responses of different poultry manure levels on the growth and yield of cucumber (Cucumis sativus Linn.) In Ibadan, Nigeria. J Res for Wildl Environ 12(3):206–215


Ortas I (2010) Effect of mycorrhiza application on plant growth and nutrient uptake in cucumber production under field conditions. Span J Agric Res 8:116–122. https://doi.org/10.5424/sjar/201008S1-1230


Porcel R, Redondo-Gómez S, Mateos-Naranjo E, Aroca R, Garcia R, Ruiz-Lozano JM (2015) Arbuscular mycorrhizal symbiosis ameliorates the optimum quantum yield of photosystem II and reduces non-photochemical quenching in rice plants subjected to salt stress. J Plant Physiol 185:75–83. https://doi.org/10.1016/j.jplph.2015.07.006


Preeti SK, Panwar J (2013) Mycorrhiza-its potential use for augmenting soil fertility and crop productivity. In: Physiology of Nutrition and Environmental Stresses on Crop Productivity, vol 14, pp 111–172. Scientific Publisher (India), Jodhpur


Rouphael Y, Franken P, Schneider C, Schwarz D, Giovannetti M, Agnolucci M, De Pascale S, Bonini P, Colla G (2015) Arbuscular mycorrhizal fungi act as biostimulants in horticultural crops. Sci Hort 196:91–108. https://doi.org/10.1016/j.scienta.2015.09.002


Rozpądek P, Rąpała-Kozik M, Wężowicz K, Grandin A, Karlsson S, Ważny R, Anielska T, Turnau K (2016) Arbuscular mycorrhiza improves yield and nutritional properties of onion (Allium cepa). Plant Physiol Biochem 107:264–272. https://doi.org/10.1016/j.plaphy.2016.06.006


Sallam BN, Lu T, Yu H, Li Q, Sarfraz Z, Iqbal MS, Khan S, Wang H, Liu P, Jiang W (2021) Productivity enhancement of cucumber (Cucumis sativus L.) through optimized use of poultry manure and mineral fertilizers under greenhouse cultivation. Horticulturae 7(8):256. https://doi.org/10.3390/horticulturae7080256


Schenck NC, Perez-Collins Y (1990) Manual for the identification of VA mycorrhizal fungi


Sivakumar P, Palanisamy K, Lenin M (2020) Potential role of arbuscular mycorrizhal fungi (AMF) and vermicompost (vc) on the maturation of Agri-culture crops-a review. S Asian J Life Sci 8(2):24–37. https://doi.org/10.17582/journal.sajls/2020/8.2.24.37


Sofi SO, Talabani SK, Sleman SM, Faraj SHG, Halshoy HS (2024) Impact of bio-based and synthetic phosphorus application on growth, yield, and protein profile of two chickpea genotypes. Agric Res. https://doi.org/10.1007/s40003-024-00753-3


Stockinger H, Krüger M, Schüßler A (2010) DNA barcoding of arbuscular mycorrhizal fungi. New Phytol 187(2):461–474. https://doi.org/10.1111/j.1469-8137.2010.03262.x


Thakur S, Sharma A, Thakur K, Sharma S, Gudeta K, Hashem A, Avila-Quezada GD, Moubayed NM, Abd Allah EF (2023) Differential responses to integrated nutrient management of cabbage–capsicum–radish cropping sequence with fertilizers and plant-growth-promoting rhizobacteria. Agronomy 13(7):1789. https://doi.org/10.3390/agronomy13071789


Tofiq GK, Halshoy HS, Mohammed HJ, Braim SA (2024) Potential impact of biochar and organic fertilizer application on morphology, productivity and biochemical composition of onion plants. Cogent food Agric 10(1):2432441. https://doi.org/10.1080/23311932.2024.2432441


van Der Heijden MG, Martin FM, Selosse MA, Sanders IR (2015) Mycorrhizal ecology and evolution: the past, the present, and the future. New Phytol 205(4):1406–1423. https://doi.org/10.1111/nph.13288


Varga S, Kytöviita M-M (2010) Interrelationships between mycorrhizal symbiosis, soil pH and plant sex modify the performance of Antennaria dioica. Acta Oecol 36(3):291–298. https://doi.org/10.1016/j.actao.2010.02.002


Williams MC, Ezeoke QA, Adelodun V, Diekade OO, Mbonu P, Omojola ET (2022) Assessment of poultry manure and NPK fertilizer on the yield components of cucumber variety in Owerri. Int J Hortic for Res 3(1):1–11


Yan L, Ying-Long C, Min L, Xian-Gui L, Run-Jin L (2012) Effects of arbuscular mycorrhizal fungi communities on soil quality and the growth of cucumber seedlings in a greenhouse soil of continuously planting cucumber. Pedosphere 22(1):79–87. https://doi.org/10.1016/S1002-0160(11)60193-8


Zahid N, Jamil Ahmed M, Mahmood Tahir M, Maqbool M, Zulfiqar Ali Shah S, Jamshaid Hussain S, Khaliq A, Ishaq Asif Rehmani M (2021) Integrated effect of urea and poultry manure on growth, yield and postharvest quality of cucumber (Cucumis sativus L). Asian J Agric Biol. https://doi.org/10.35495/ajab.2020.07.381


Zhong W, Gu T, Wang W, Zhang B, Lin X, Huang Q, Shen W (2010) The effects of mineral fertilizer and organic manure on soil microbial community and diversity. Plant Soil 326:511–522. https://doi.org/10.1007/s11104-009-9988-y


Zhu X, Wang C, Chen H, Tang M (2014) Effects of arbuscular mycorrhizal fungi on photosynthesis, carbon content, and calorific value of black Locust seedlings. Photosynthetica 52(2):247–252. https://doi.org/10.1007/s11099-014-0031-z

 


Author Information


Horticulture Department, Directorate of Agricultural Research, Sulaymaniyah, Iraq