Pharmacological investigation on the antiparasitic properties of Alstonia scholaris focussing on the antiplasmodial and anticestodal uses in the Mizo traditional medicine of India

*Article not assigned to an issue yet


Research Articles | Published:

E-ISSN: 2229-4473.
Website: www.vegetosindia.org
Pub Email: contact@vegetosindia.org
DOI: 10.1007/s42535-025-01409-5
First Page: 0
Last Page: 0
Views: 2

Keywords: Cestode, Malaria, Medicinal plant, Microscopy, Parasite


Abstract


Alstonia scholaris (L.) R. Br. is used in the Mizo traditional medicine exclusively as a remedy for parasitic infections such as malaria and intestinal helminthiasis. The study attempted to test its biological activities against an intestinal helminth, Raillietina tetragona, and two isolates of Plasmodium falciparum, multidrug-resistant K1 and drug-sensitive 3D7. An aqueous extract of the bark was used to treat cestode and malarial parasites. Chemical analysis was performed with gas chromatography-mass spectrometry, and the principal compound were screened in silico using key proteins of helminths and Plasmodium. The plant extract showed concentration-dependent activity against the cestode parasite. Histology revealed structural breakdown in the parasite including tegumental collapse, disintegration of musculature and dissociation of the eggs. Under scanning electron microscopy, tegumental shrinkage and erosion, bleb formation, removal of spines and microtriches were discernible. The plant extract exhibited antimalarial activity against P. falciparum but with moderate efficacy at the inhibitory concentration (IC50) above 50 µg/mL. It was equally effective against the drug-resistant isolate. Cytotoxicity test against primate cell line (VERO C1008) showed a half-maximal cytotoxic concentration (CC50) at > 100 µg/mL, indicating that it is highly non-toxic and safe for therapeutic use. Gelsemine and 7,9-di-tert-butyl-1-oxaspiro(4,5)deca-6,9-diene-2,8-dione were identified as the principal phytocompounds. The compounds revealed high ligand-binding potentials against helminth proteins such as β-tubulin and glutamate-gated chloride channel (GluCl), and malarial proteins like Plasmodium falciparum erythrocyte membrane protein 1 (VAR2CSA) and S-adenosyl-L-homocysteine hydrolase (SAHH). Gelsemine was found to have exceptionally high binding efficiency on GluCl and VAR2CSA in terms of binding energy and amino acid interactions. The findings substantiate the traditional use of A. scholaris and highlight its potential as a source of novel antiparasitic agents.

Cestode, Malaria, Medicinal plant, Microscopy, Parasite


References


Afolayan FI, Sowemimo R (2022) Ethnobotanical study of plants used for treating intestinal worms in Ibadan. Nigeria Zoologist 21(1):32–40. https://doi.org/10.4314/tzool.v21i1.6


Agarwal P, Anvikar AR, Pillai CR, Srivastava K (2017) In vitro susceptibility of Indian Plasmodium falciparum isolates to different antimalarial drugs & antibiotics. Indian J Med Res 146(5):622–628. https://doi.org/10.4103/ijmr.IJMR_1688_15


Al-Askar A, Al-Otibi FO, Abo-Zaid GA, Abdelkhalek A (2024) Pyrrolo [1, 2-a] pyrazine-1, 4-dione, hexahydro-3-(2-methylpropyl), as the primary secondary metabolite of Bacillus spp., could be an effective antifungal agent against the soil-borne fungus, Sclerotium Bataticola. Egypt J Chem 67(13):1009–1022. https://doi.org/10.4103/mtsp.mtsp_2_23


Althoff T, Hibbs RE, Banerjee S, Gouaux E (2014) X-ray structures of glucl in Apo States reveal a gating mechanism of Cys-loop receptors. Nature 512(7514):333–337. https://doi.org/10.1038/nature13669


Alvarez LI, Mottier ML, Lanusse CE (2007) Drug transfer into target helminth parasites. Trends Parasitol 23(3):97–104. https://doi.org/10.1016/j.pt.2007.01.003


Bhadane BS, Patil MP, Maheshwari VL, Patil RH (2018) Ethnopharmacology, phytochemistry, and biotechnological advances of family apocynaceae: A review. Phytother Res 32(7):1181–1210. https://doi.org/10.1002/ptr.6066


Bhakuni RS, Jain DC, Sharma RP, Kumar S (2001) Secondary metabolites of Artemisia annua and their biological activity. Curr Sci 10:35–48. https://www.jstor.org/stable/24105552


Boratyński PJ, Zielińska-Błajet M, Skarżewski J (2019) Cinchona alkaloids—derivatives and applications. Alkaloids Chem Biol 82:29–145. https://doi.org/10.1016/bs.alkal.2018.11.001


Chai JY, Jung BK, Hong SJ (2021) Albendazole and Mebendazole as anti-parasitic and anti-cancer agents: an update. Korean J Parasitol 59(3):189–225. https://doi.org/10.3347/kjp.2021.59.3.189


Chhajed M, Jain A, Pagariya A, Dwivedi S, Jain N, Taile V (2023) Alstonia scholaris linn. R. Br.: an assessment of its botany, conventional utilizaton, phytochemistry and Pharmacology. Pharmacogn Rev 17(33):184–203. https://doi.org/10.5530/097627870302


Chandra G, Patel S, Panchal M, Singh DV (2021) S-adenosyl-L-homocysteine hydrolase: its inhibitory activity against Plasmodium falciparum and development of malaria drugs. Mini Rev Med Chem 21(7):833–846. https://doi.org/10.2174/1389557521666201218155321


Che X, Liu Q, Zhang L (2023) An accurate and universal protein-small molecule batch Docking solution using Autodock Vina. Results Eng 19:101335. https://doi.org/10.1016/j.rineng.2023.101335


Chen J, Gong Y, Chen Q, Li S, Zhou Y (2024) Global burden of soil-transmitted helminth infections, 1990–2021. Infect Dis Poverty 13(05):68–77. https://doi.org/10.1186/s40249-024-01238-9


Choudhary S, Kashyap SS, Martin RJ, Robertson AP (2022) Advances in our Understanding of nematode ion channels as potential anthelmintic targets. Int J Parasitol Drugs Drug Resist 18:52–86. https://doi.org/10.1016/j.ijpddr.2021.12.001


Cimanga RK, Nsaka SL, Tshodi ME, Mbamu BM, Kikweta CM, Makila FB, Cos P, Maes L, Vlietinck AJ, Exarchou V, Tuenter E (2019) In vitro and in vivo antiplasmodial activity of extracts and isolated constituents of Alstonia congensis root bark. J Ethnopharmacol 242:111736. https://doi.org/10.1016/j.jep.2019.02.019


Dey A, Mukherjee A, Chaudhury M (2017) Alkaloids from apocynaceae: origin, pharmacotherapeutic properties, and structure-activity studies. Stud Nat Prod Chem 52:373–488. https://doi.org/10.1016/B978-0-444-63931-8.00010-2


Dhakad PK, Biswas S, Meena S, Kumar A, Yadav S, Chaturvedi A (2025) Current insights into the phytochemistry, traditional, and biological importance of Alstonia scholaris (L.) R. Br. Curr Funct Foods 3(2):E270624231402. https://doi.org/10.2174/0126668629295155240531061648


Dos Santos MB, de Oliveira AB, Mourão RH (2024) Brazilian plants with antimalarial activity: A review of the period from 2011 to 2022. J Ethnopharmacol 322:117595. https://doi.org/10.1016/j.jep.2023.117595


Endress ME, Bruyns PV (2000) A revised classification of the Apocynaceae Sl. Bot Rev 66:1–56. https://doi.org/10.1007/BF02857781


Ghosh A, Carter RG (2019) Recent syntheses and strategies toward polycyclic Gelsemium alkaloids. Angew Chem Int Ed 58(3):681–694. https://doi.org/10.1002/anie.201807509


Giri BR, Roy B (2014) Resveratrol induced structural and biochemical alterations in the tegument of Raillietina Echinobothrida. Parasitol Int 63(2):432–437. https://doi.org/10.1016/j.parint.2013.12.008


Halton DW (2004) Microscopy and the helminth parasite. Micron 35(5):361–390. https://doi.org/10.1016/j.micron.2003.12.001


Hamid L, Alsayari A, Tak H, Mir SA, Almoyad MA, Wahab S, Bader GN (2023) An insight into the global problem of Gastrointestinal helminth infections amongst livestock: does nanotechnology provide an alternative? Agriculture 13(7):1359. https://doi.org/10.3390/agriculture13071359


Harshita A, Nonika R (2024) Emerging antihelminthic drug resistance: implications for mass drug administration program. One Health Bull 4(4):157–163. https://doi.org/10.4103/ohbl.ohbl_19_24


Huang CY, Huang SJ, Yu H, Tang MH, Liu ZY (2024) The toxicology and detoxification of Gelsemium: traditional and modern views. Pharm Res Mod Chin Med 12:100482. https://doi.org/10.1016/j.prmcm.2024.100482


Johnson JD, Dennull RA, Gerena L, Lopez-Sanchez M, Roncal NE, Waters NC (2007) Assessment and continued validation of the malaria SYBR green I-based fluorescence assay for use in malaria drug screening. Antimicrob Agents Chemother 51(6):1926–1933. https://doi.org/10.1128/aac.01607-06


Joseph MK, Thangavel I (2023) GC-MS/HPTLC analysis, antioxidant, anti-inflammatory and antimicrobial efficacy of Garcinia cambogia. Free Rad Antioxid 13(1):10–20. https://doi.org/10.5530/fra.2023.1.3


Kadiyala M, Ponnusankar S, Elango K (2013) Calotropis gigantiea (L.) R. Br (Apocynaceae): A phytochemical and Pharmacological review. J Ethnopharmacol 150(1):32–50. https://doi.org/10.1016/j.jep.2013.08.045


Kaushik P, Kaushik D, Sharma N, Rana A (2011) Alstonia scholaris: it’s phytochemistry and Pharmacology. Chron Young Sci 2(2):71–78. https://doi.org/10.4103/2229-5186.82970


Keawpradub N, Kirby GC, Steele JC, Houghton P (1999) Antiplasmodial activity of extracts and alkaloids of three Alstonia species from Thailand. Planta Med 65(08):690–694. https://doi.org/10.1055/s-1999-14043


Khyade MS, Kasote DM, Vaikos NP (2014) Alstonia scholaris (L.) R. Br. and Alstonia macrophylla wall. Ex G. Don: A comparative review on traditional uses, phytochemistry and Pharmacology. J Ethnopharm 153(1):1–8. https://doi.org/10.1016/j.jep.2014.01.025


Kumar S, Arif M, Jawaid T, Al-Khamees OA, Anjum A, Shafi S, Thirunavukkarasu V, Josephine SP, Muteeb G, Singh K, Qadir A (2023) Antiplatelet and thrombolytic activity of phenolic-insistent fractions from the new-fangled stem of Ficus benghalensis with concurrent GC-MS analysis. Intell Pharm 1(4):224–231. https://doi.org/10.1016/j.ipha.2023.07.005


Lakshmegowda SB, Rajesh SK, Kandikattu HK, Nallamuthu I, Khanum F (2020) In vitro and in vivo studies on hexane fraction of Nitzschia palea, a freshwater diatom for oxidative damage protective and anti-inflammatory response. Rev Bras Farmacogn 30:189–201. https://doi.org/10.1007/s43450-020-00008-6


Lalchhandama K (2010) In vitro effects of albendazole on Raillietina echinobothrida, the cestode of chicken, Gallus domesticus. J Young Pharm 2(4):374–378. https://doi.org/10.4103/0975-1483.71630


Lalchhandama K (2017) Plasmodium falciparum erythrocyte membrane protein 1. Wiki J Med 4(1):1–8. https://doi.org/10.15347/wjm/2017.004


Lalthanpuii PB, Zokimi Z, Lalchhandama K (2020) Anthelmintic activity of praziquantel and Spilanthes acmella extract on an intestinal cestode parasite. Acta Pharm 70(4):551–560. https://doi.org/10.2478/acph-2020-0039


Lalzarzovi ST, Lalnuntlunaga (2022) Plant species diversity in a tropical semi-evergreen forest in Mizoram (northeastern India): assessing the effectiveness of community conservation. J Threat Taxa 14(5):21055–21067. https://doi.org/10.11609/jott.7549.14.5.21055-21067


Lee MR (2002) Plants against malaria. J R Col Physicians Edinb 32(3):189–196. https://doi.org/10.1177/1478271520023203015


Liede-Schumann S (2024) The Apocynaceae TEN (Taxonomic expert Network). Taxon 73(5):1130–1139. https://doi.org/10.1002/tax.13220


Long J, Tang M, Zuo M, Xu W, Meng S, Liu Z (2023) The antianxiety effects of Koumine and gelsemine, two main active components in the traditional Chinese herbal medicine Gelsemium: A comprehensive review. Brain-X 1(4):e46. https://doi.org/10.1002/brx2.46


Lumpu SL, Kikueta CM, Tshodi ME, Mbenza AP, Kambu OK, Mbamu BM, Cos P, Maes L, Apers S, Pieters L, Cimanga RK (2013) Antiprotozoal screening and cytotoxicity of extracts and fractions from the leaves, stem bark and root bark of Alstonia congensis. J Ethnopharmacol 148(2):724–727. https://doi.org/10.1016/j.jep.2013.04.016


Ma R, Lian T, Huang R, Renn JP, Petersen JD, Zimmerberg J, Duffy PE, Tolia NH (2021) Structural basis for placental malaria mediated by Plasmodium falciparum VAR2CSA. Nat Microbiol 6(3):380–391. https://doi.org/10.1038/s41564-020-00858-9


Mansur F, Luoga W, Buttle DJ, Duce IR, Lowe A, Behnke JM (2014) The anthelmintic efficacy of natural plant cysteine proteinases against two rodent cestodes Hymenolepis diminuta and Hymenolepis microstoma in vitro. Vet Parasitol 201(1–2):48–58. https://doi.org/10.1016/j.vetpar.2013.12.018


Marileo AM, Lara CO, Sazo A, Contreras OV, González G, Castro PA, Aguayo LG, Moraga-Cid G, Fuentealba J, Burgos CF, Yévenes GE (2024) Molecular Pharmacology of Gelsemium alkaloids on inhibitory receptors. Int J Mol Sci 25(6):3390. https://doi.org/10.3390/ijms25063390


Markoski MM, Trindade ES, Cabrera G, Laschuk A, Galanti N, Zaha A, Nader HB, Ferreira HB (2006) Praziquantel and albendazole damaging action on in vitro developing Mesocestoides Corti (Platyhelminthes: Cestoda). Parasitol Int 55(1):51–61. https://doi.org/10.1016/j.parint.2005.09.005


Martin RJ, Robertson AP, Choudhary S (2021) Ivermectin: an anthelmintic, an insecticide, and much more. Trends Parasitol 37(1):48–64. https://doi.org/10.1016/j.pt.2020.10.005


Mertens JE (2024) A history of malaria and conflict. Parasitol Res 123(3):165. https://doi.org/10.1007/s00436-024-08167-4


Mueller RJ (1985) Determinate branch development in Alstonia scholaris (Apocynaceae): the Plagiotropic module. Amer J Bot 72(9):1435–1444. https://doi.org/10.1002/j.1537-2197.1985.tb08401.x


Okombo J, Fidock DA (2024) Towards next-generation treatment options to combat plasmodium falciparum malaria. Nat Rev Microbiol 4:1–4. https://doi.org/10.1038/s41579-024-01099-x


Peng YL, Liang JJ, Xue Y, Khan A, Zhang PP, Feng TT, Song D, Zhou Y, Wei X (2023) Genus Gelsemium and its endophytic fungi – Comprehensive review of their traditional uses, phytochemistry, pharmacology, and toxicology. Curr Top Med Chem 23(26):2452–2487. https://doi.org/10.2174/1568026623666230825105233


Rai PK, Lalramnghinglova H (2011) Threatened and less known ethnomedicinal plants of an Indo-Burma hotspot region: conservation implications. Environ Monit Assess 178:53–62. https://doi.org/10.1007/s10661-010-1670-6


Ralte L, Sailo H, Singh YT (2024) Ethnobotanical study of medicinal plants used by the Indigenous community of the Western region of mizoram, India. J Ethnobiol Ethnomed 20(1):2. https://doi.org/10.1186/s13002-023-00642-z


Rotich AK, Takashima E, Yanow SK, Gitaka J, Kanoi BN (2022) Towards identification and development of alternative vaccines against pregnancy-associated malaria based on naturally acquired immunity. Front Trop Dis 3:988284. https://doi.org/10.3389/fitd.2022.988284


Ray MS, Mondal C, Saha S, Mandal S, Lyndem LM (2025) Quercetin: an anthelmintic potential against zoonotic tapeworm Hymenolepis diminuta (Rudolphi, 1819). J Helminthol 99:e9. https://doi.org/10.1017/S0022149X24000877


Saha S, Mondal C, Mandal S, Ray MS, Lyndem LM (2024) In vitro anthelmintic efficacy of ferulic and sinapic acid against zoonotic cestode Hymenolepis diminuta (Rudolphi, 1819). J Parasit Dis 22:1–3. https://doi.org/10.1007/s12639-024-01689-9


Sharma HK, Chhangte L, Dolui AK (2001) Traditional medicinal plants in mizoram, India. Fitoterapia 72:146–161. https://doi.org/10.1016/S0367-326X(00)00278-1


Shi D, Wei L, Liang H, Yan D, Zhang J, Wang Z (2023) Trends of the global, regional and National incidence, mortality, and disability-adjusted life years of malaria, 1990–2019: an analysis of the global burden of disease study 2019. Risk Manag Healthc Policy 31:1187–1201. https://doi.org/10.2147/RMHP.S419616


Singh KK, Singh LS, Singh CB (2022) Cultural, practical, and economic value of edible plants used by Mizo tribes of Mizoram. Edible plants in health and diseases: volume 1: cultural, practical and economic value. Springer Nature, Singapore, pp 285–302. https://doi.org/10.1007/978-981-16-4880-9_12


Smith N (2023) Apocynaceae: Dogbane or milkweed family. In: Smith N (ed) Amazon fruits: an ethnobotanical journey. Springer, Cham, pp 127–175. https://doi.org/10.1007/978-3-031-12803-5_4


Souza AD, Lima CA, Júnior JD, Silva MP, Silva MB (2021) Therapeutics activities of Amazonian plant Himatanthus Sucuuba (Spruce ex müll. Arg.) Woodson (Apocynaceae): A review. J Adv Biol Biotechnol 24(2):1–4. https://doi.org/10.9734/jabb/2021/v24i230197


Strydom T, Lavan RP, Torres S, Heaney K (2023) The economic impact of parasitism from nematodes, trematodes and ticks on beef cattle production. Animals 13(10):1599. https://doi.org/10.3390/ani13101599


Taek MM, Tukan GD, Prajogo BEW, Agil MG (2021) Antiplasmodial activity and phytochemical constituents of selected antimalarial plants used by native people in West Timor Indonesia. Turkish J Pharm Sci 18(1):80–90. https://doi.org/10.4274/tjps.galenos.2019.29000


Taguchi S, Nakano J, Imasaki T, Kita T, Saijo-Hamano Y, Sakai N, Shigematsu H, Okuma H, Shimizu T, Nitta E, Kikkawa S (2022) Structural model of microtubule dynamics Inhibition by kinesin-4 from the crystal structure of KLP-12–tubulin complex. Elife 11:e77877. https://doi.org/10.7554/eLife.77877


Taljaard L, Haynes RK, Van Der Kooy F (2023) Artemisia species and their active constituents for treating schistosomiasis. Rev Bras Farmacogn 33(5):875–885. https://doi.org/10.1007/s43450-023-00407-5


Tanaka N, Nakanishi M, Kusakabe Y, Shiraiwa K, Yabe S, Ito Y, Kitade Y, Nakamura KT (2004) Crystal structure of S-adenosyl-L-homocysteine hydrolase from the human malaria parasite Plasmodium falciparum. J Mol Biol 343(4):1007–1017. https://doi.org/10.1016/j.jmb.2004.08.104


Taub JW, Buck SA, Xavier AC, Edwards H, Matherly LH, Ge Y (2024) The evolution and history of Vinca alkaloids: from the big Bang to the treatment of pediatric acute leukemia. Pediatr Blood Cancer 71(11):e31247. https://doi.org/10.1002/pbc.31247


Trager W, Jensen JB (1976) Human malaria parasites in continuous culture. Science 193:673–675. https://doi.org/10.1126/science.781840


Uzor PF (2020) Alkaloids from plants with antimalarial activity: a review of recent studies. Evid Based Complement Alternat Med 2020(1):8749083. https://doi.org/10.1155/2020/8749083


Wallaart TE, Pras N, Beekman AC, Quax WJ (2000) Seasonal variation of Artemisinin and its biosynthetic precursors in plants of Artemisia annua of different geographical origin: proof for the existence of chemotypes. Planta Med 66(01):57–62. https://doi.org/10.1055/s-2000-11115


Wang L, Chen S, Gao X, Liang X, Lv W, Zhang D, Jin X (2023) Recent progress in chemistry and bioactivity of monoterpenoid Indole alkaloids from the genus Gelsemium: A comprehensive review. J Enzyme Inhib Med Chem 38(1):2155639. https://doi.org/10.1080/14756366.2022.2155639


Watanabe W, Konno K, Ijichi K, Inoue H, Yokota T, Shigeta S (1994) MTT colorimetric assay system for the screening of anti-orthomyxo-and anti-paramyxoviral agents. J Virol Methods 48(2–3):257–265. https://doi.org/10.1016/0166-0934(94)90124-4


Weathers PJ (2023) Artemisinin as a therapeutic vs. its more complex Artemisia source material. Nat Prod Rep 40(7):1158–1169. https://doi.org/10.1039/D3NP00001J


Zhang Y, Ming Y (2024) Burden of schistosomiasis in global, regional, and National 1990–2019: A systematic analysis for the global burden of disease study 2019. Travel Med Infect Dis 61:102751. https://doi.org/10.1016/j.tmaid.2024.102751

 


Author Information


Department of Botany, Government Kolasib College, Kolasib, India