*Article not assigned to an issue yet
Freitas Thiago S., Rocha Janaina E., Lima Marcos J. F., Nonato Carla F. A., Camilo Cicera J., Paulo Cicera L. R., Alencar Maria A. S., Araújo Isaac M., Belém Karla S. T. G., Silva Selvina P.
Keywords: Herbal medicines, Multidrug-resistant bactéria, Antibacterial activity, n Luetzelburgian auriculatan , Hydroethanolic extract
Herbal medicines are widely utilized across different regions of the world for the treatment of various diseases. Plant-derived compounds represent a promising strategy in the fight against bacterial resistance, particularly in multidrug-resistant strains. This study aimed to evaluate the antibacterial activity of hydroethanolic extract of Luetzelburgia auriculata leaves against multidrug-resistant strains of Staphylococcus aureus and Escherichia coli, both in terms of direct antibacterial effects and potential adjuvant activity. The chemical composition of the extract was assessed through qualitative phytochemical analysis, while antibacterial activity was evaluated using broth microdilution method. Phytochemical screening revealed the presence of flavones, flavonoids, leucoanthocyanidins, catechins, and alkaloids. Although the extract did not exhibit direct antibacterial activity against tested strains, it was able to modulate bacterial resistance mechanisms against gentamicin and ciprofloxacin. A potential mechanism of action suggested in this study is the interference with bacterial efflux pumps, which play a crucial role in antimicrobial resistance.
Agreles MAA, Cavalcanti IDL, Cavalcanti IMF (2021) The role of essential oils in the inhibition of efflux pumps and reversion of bacterial resistance to antimicrobials. Curr Microbiol 78(10):3609–3619
Ahmed S et al (2019) Environmental factors variably impact tea secondary metabolites in the context of climate change. Front Plant Sci 10:939
Álvarez-Martínez FJ et al (2021) Antibacterial plant compounds, extracts and essential oils: an updated review on their effects and putative mechanisms of action. Phytomedicine 90:153626
Barbosa AJC et al (2021) Composição química e atividade antibacteriana dos óleos essenciais de Croton urticifolius LAM. e Croton adamantinus Müll. Arg. (Euphorbiaceae)
Bastos-Cavalcante N et al (2020) Phytochemical analysis, antibacterial activity and antibiotic modifying action of Jatropha mollissima (Pohl.) Baill. (Euphorbiaceae). Anales de Biología. Servicio de Publicaciones de la Universidad de Murcia, pp 85–94
Brasileiro BG et al (2006) Antimicrobial and cytotoxic activities screening of some Brazilian medicinal plants used in Governador Valadares district. Rev Bras Ciênc Farm 42(2):195–202
Butler MS et al (2022) Analysis of the clinical pipeline of treatments for drug-resistant bacterial infections: despite progress, more action is needed. Antimicrob Agents Chemother 66(3):e01991-e2021
Chaughule RS, Barve RS (2024) Role of herbal medicines in the treatment of infectious diseases. Vegetos 37(1):41–51
Chaves BJ, Tadi P (2023) Gentamicin. StatPearls. StatPearls Publishing, Treasure Island, FL
Cheema HS et al (2024) Antibiotic potentiation through phytochemical-based efflux pump inhibitors to combat multidrug resistance bacteria. Med Chem 20(6):557–575
Chumkaew P, Srisawat T (2021) A new flavone from Oroxylum indicum and its antibacterial activity. Chem Nat Compd 57:274–276
Coutinho HDM et al (2008) In vitro anti-staphylococcal activity of Hyptis martiusii Benth against methicillin-resistant Staphylococcus aureus: MRSA strains. Rev Bras 18:670–675
de Alencar NMM et al (2010) An anti-inflammatory lectin from Luetzelburgia auriculata seeds inhibits adhesion and rolling of leukocytes and modulates histamine and PGE2 action in acute inflammation models. Inflamm Res 59:245–254
de Vasconcelos AL (2012) Perfil anatômico fitoquímico, antimicrobiano e citotóxico de Luetzelburgia auriculata (allemao) Ducke. Dissertação de Mestrado. Universidade Federal de Pernambuco
Dias MC, Pinto DCGA, Silva AMS (2021) Plant flavonoids: chemical characteristics and biological activity. Molecules 26(17):5377
Ding C-F et al (2019) Thalicfoetine, a novel isoquinoline alkaloid with antibacterial activity from Thalictrum foetidum. Tetrahedron Lett 60(41):151135
Freitas TS et al (2021) UPLC-QTOF-MS/MS analysis and antibacterial activity of the Manilkara zapota (L.) P Royen against Escherichia coli and other MDR bacteria. Cell Mol Biol 67(1):116–124
Gallucci MN et al (2009) Antimicrobial combined action of terpenes against the food-borne microorganisms Escherichia coli, Staphylococcus aureus and Bacillus cereus. Flavour Fragr J 24(6):348–354
Grimsey EM et al (2020) Chlorpromazine and amitriptyline are substrates and inhibitors of the AcrB multidrug efflux pump. Mbio. https://doi.org/10.1128/mbio.00465-20
Houghton PJ et al (2007) Uses and abuses of in vitro tests in ethnopharmacology: visualizing an elephant. J Ethnopharmacol 110(3):391–400
Hu R et al (2020) Ethnobotanical study on medicinal plants used by Mulam people in Guangxi, China. J Ethnobiol Ethnomed 16:1–50
Huang W et al (2022) Biosynthesis investigations of terpenoid, alkaloid, and flavonoid antimicrobial agents derived from medicinal plants. Antibiotics 11(10):1380
Javadpour MM et al (1996) De novo antimicrobial peptides with low mammalian cell toxicity. J Med Chem 39(16):3107–3113
Jernigan JA et al (2020) Multidrug-resistant bacterial infections in US hospitalized patients, 2012–2017. N Engl J Med 382(14):1309–1319
Karak P (2019) Biological activities of flavonoids: an overview. Int J Pharm Sci Res 10(4):1567–1574
Khare T et al (2021) Exploring phytochemicals for combating antibiotic resistance in microbial pathogens. Front Pharmacol 12:720726
Kumar G, Tudu AK (2023) Tackling multidrug-resistant Staphylococcus aureus by natural products and their analogues acting as NorA efflux pump inhibitors. Bioorgan Med Chem 80:117187
Lefebvre T, Destandau E, Lesellier E (2021) Selective extraction of bioactive compounds from plants using recent extraction techniques: a review. J Chromatogr A 1635:461770
Li Y et al (2020) The effect of developmental and environmental factors on secondary metabolites in medicinal plants. Plant Physiol Biochem 148:80–89
Lima LB et al (2022) Chemical and antibacterial analysis of Cinnamomum verum leaves extract and fractions against multidrug resistant bacteria. Nat Prod Res 36(10):2559–2564
Maher C, Hassan KA (2023) The Gram-negative permeability barrier: tipping the balance of the in and the out. Mbio 14(6):e01205-e1223
Marshall RL et al (2020) New multidrug efflux inhibitors for Gram-negative bacteria. Mbio. https://doi.org/10.1128/mbio.01340-20
Martins TF et al (2018) A Bowman-Birk inhibitor from the seeds of Luetzelburgia auriculata inhibits Staphylococcus aureus growth by promoting severe cell membrane damage. J Nat Prod 81(7):1497–1507
Matos FJA (1997) Introdução à fitoquímica experimental, 2nd edn. Edições UFC, Fortaleza, Brazil
Melo VMM et al (2005) A cotyledonary agglutinin from Luetzelburgia auriculata inhibits the fungal growth of Colletotrichum lindemuthianum, Fusarium solani and Aspergillus niger and impairs glucose-stimulated acidification of the incubation medium by Saccharomyces cerevisiae cells. Plant Sci 169(3):629–639
Moreira MAS et al (2008) Resistência a antimicrobianos dependente do sistema de efluxo multidrogas em Escherichia coli isoladas de leite mastítico. Arq Bras Med Vet Zootec 60:1307–1314
Murugaiyan J et al (2022) Progress in alternative strategies to combat antimicrobial resistance: focus on antibiotics. Antibiotics 11(2):200
Oo T et al (2021) Inhibition of bacterial efflux pumps by crude extracts and essential oil from Myristica fragrans Houtt. (nutmeg) seeds against methicillin-resistant Staphylococcus aureus. Molecules 26(15):4662
Oulahal N, Degraeve P (2022) Phenolic-rich plant extracts with antimicrobial activity: an alternative to food preservatives and biocides? Front Microbiol 12:753518
Peechakara BV, Gupta M (2022) Ampicillin/sulbactam. StatPearls [Internet]. StatPearls Publishing, pp 7–9
Pinto ÉNF et al (2015) Efeitos alelopáticos do pau pedra (Luetzelburgia auriculata (Allemão) Ducke) sobre a germinação e o desenvolvimento da alface (Lactuca sativa L.)
Pinto É et al (2018) Allelopathic effects of aqueous extract of leaves and roots of Luetzelburgia auriculata (Allemo) Ducke on seeds germination and initial growth of lettuce (Lactuca sativa L.). Afr J Agric Res 13(13):635–643
Pulingam T et al (2022) Antimicrobial resistance: prevalence, economic burden, mechanisms of resistance and strategies to overcome. Eur J Pharm Sci 170:106103
Rios J-L, Recio MC (2005) Medicinal plants and antimicrobial activity. J Ethnopharmacol 100(1–2):80–84
Sena BS, Lucchese AM (2017) Avaliação da composição química e atividade antioxidante dos extratos e frações de folha de Luetzelburgia auriculata (ALEMÃO) Ducke. Anais Semin Iniciaç Cient 7:8. https://doi.org/10.13102/semic.v0i21.2632
Silva DD et al (2020) Características morfológicas de frutos, sementes e plântulas de Luetzelburgia auriculata (Allemão) Ducke-Fabaceae. Res, Soc Dev 9(8):e545986133
Sinsinwar S, Vadivel V (2020) Catechin isolated from cashew nut shell exhibits antibacterial activity against clinical isolates of MRSA through ROS-mediated oxidative stress. Appl Microbiol Biotechnol 104:8279–8297
Soares EL et al (2007) Characterization and insecticidal properties of globulins and albumins from Luetzelburgia auriculata (Allemao) Ducke seeds towards Callosobruchus maculatus (F) (Coleoptera: Bruchidae). J Stored Prod Res 43(4):459–467
Song L et al (2022) Antibacterial modes of herbal flavonoids combat resistant bacteria. Front Pharmacol 13:873374
Souza AB et al (2023) Antibacterial activity and anxiolytic-like effect of Ziziphus joazeiro Mart. leaves in adult zebrafish (Danio rerio). Fish Shellfish Immunol Rep 5:100108
Sykes EME et al (2023) Salicylic acids and pathogenic bacteria: new perspectives on an old compound. Can J Microbiol 70(1):1–14
Tavares TD et al (2020) Activity of specialized biomolecules against gram-positive and gram-negative bacteria. Antibiotics 9(6):314
Thai T, Salisbury BH, Zito PM (2023) Ciprofloxacin. StatPearls [Internet]. StatPearls Publishing, pp 7–9
Ullah R et al (2020) A review on ethno-medicinal plants used in traditional medicine in the Kingdom of Saudi Arabia. Saudi J Biol Sci 27(10):2706–2718
Varela MF et al (2021) Bacterial resistance to antimicrobial agents. Antibiotics 10(5):593
Verma P, Tiwari M, Tiwari V (2021) Strategies to combat bacterial antimicrobial resistance: a focus on mechanism of the efflux pumps inhibitors. SN Compr Clin Med 3:510–527
Waditzer M, Bucar F (2021) Flavonoids as inhibitors of bacterial efflux pumps. Molecules 26(22):6904
Zhang L et al (2024) Bacterial efflux pump inhibitors reduce antibiotic resistance. Pharmaceutics 16(2):170
Departamento de Química Biológica, Universidade Regional do Cariri, Crato, Brasil