Reduced hyperhydricity and enhanced adventitious shoot induction, proliferation, and regeneration of Gynura divaricata (L.) DC.

*Article not assigned to an issue yet

, , , , , ,


Research Articles | Published:

E-ISSN: 2229-4473.
Website: www.vegetosindia.org
Pub Email: contact@vegetosindia.org
DOI: 10.1007/s42535-025-01265-3
First Page: 0
Last Page: 0
Views: 805

Keywords: Shoot proliferation coefficient (SPC), Hyperhydricity, Adventitious shoot induction, Leaf explants, Transplantation


Abstract


Gynura divaricata (L.) DC., a herb with economic, ecological, and medical importance, is widely cultivated in tropical and subtropical areas of Southeast Asia. G. divaricata can bloom and set seeds, but only a small number of seeds form and very few are viable, so seedlings are rarely employed for propagation purposes. In this study, callus and adventitious shoots were induced from leaves. Adventitious shoot propagation is reported for the first time for this species. The optimal medium for direct induction of adventitious shoots from leaf explants was Murashige and Skoog (MS) medium containing 4.0 mg L− 1 thidiazuron (TDZ), forming 7.78 adventitious shoot buds per explant. When 2.0 mg L− 1 TDZ and 0.5 mg L− 1 α-naphthaleneacetic acid (NAA) or 2.0 mg L− 1 6-benzyladenine (BA) and 0.5 mg L− 1 NAA were added to MS medium, callus was induced initially, followed by 9.78 or 8.87 adventitious shoot buds (per explant), which developed from callus. Adventitious shoots could not be induced by 2,4-dichlorophenoxyacetic acid, NAA or kinetin. The addition of L-ascorbic acid (AsA) to MS medium reduced the level of hyperhydricity of shoots and plantlets. The optimal medium for shoot proliferation was MS medium with 4.0 mg L− 1 BA and 50 mg L− 1 AsA. Optimal rooting of G. divaricata was achieved on MS medium with 0.5 mg L− 1 indole-3-butyric acid, with 97.33% of shoots forming roots within 1 week. The optimal substrate for transplantation was a mixture of peat and vermiculite or peat and fine sand (1:1, v/v). After 3 weeks, the survival percentage of transplanted plantlets was 98.15%.

Shoot proliferation coefficient (SPC), Hyperhydricity, Adventitious shoot induction, Leaf explants, Transplantation


References


Abraham J, Thomas TD (2016) Recent advances in Asteraceae tissue culture. In: Anis M, Ahmad N (eds) Plant tissue culture: propagation, conservation and crop improvement. Springer, Singapore. https://doi.org/10.1007/978-981-10-1917-3_9


Afolayan AJ, Adebola PO (2010) Plant regeneration from seed-derived callus of Arctotis arctotoides (LF) O. Hoffm.: A medicinal herb of the family Asteraceae. South Afr J Bot 76:407–408. https://doi.org/10.1016/j.sajb.2010.02.058


Akowuah GA, Sadikun A, Mariam A (2002) Flavonoid identification and hypoglycaemic studies of the butanol fraction from Gynura procumbens. Pharm Biol 40:405–410. https://doi.org/10.1076/phbi.40.6.405.8440


Alves RC, Oliveira KR, Lúcio JCB, Silva JS, Carrega WC, Queiroz SF, Gratão PL (2022) Exogenous foliar ascorbic acid applications enhance salt-stress tolerance in peanut plants through increase in the activity of major antioxidant enzymes. South Afr J Bot 150:759–767. https://doi.org/10.1016/j.sajb.2022.08.007


Banu TA, Goswami B, Akter S, Islam M, Tanjin T, Habib A (2017) In vitro regeneration of Gynura procumbens (Lour.) Merr. Plant Tiss Cult Biotech 27:207–216. https://doi.org/10.3329/ptcb.v27i2.35026


Bari MS, Khandokar L, Haque E, Romano B, Capasso R, Seidel V, Haque MA, Rashid MA (2021) Ethnomedicinal uses, phytochemistry, and biological activity of plants of the genus Gynura. J Ethnopharmacol 271:113834. https://doi.org/10.1016/j.jep.2021.113834


Bao DM (2008) The culture of isolated microspores of ornamental Kale (Brassica Oleracea Var. acephala) and the importance of genotype to. Embryo Regeneration Sci Hortic 130:296–302. https://doi.org/10.1016/j.scienta.2008.03.023


Cao S, Wan C, Yu Y, Zhou S, Liu W, Tian S (2011) Antioxidant activity and free radical-scavenging capacity of Gynura divaricata leaf extracts at different temperatures. Phcog Mag 7:40–45. https://doi.org/10.4103/0973-1296.75900


Chan LK, Lim SY, Pan LP (2009) Micropropagation of Gynura procumbens (lour.) Merr. An important medicinal plant. J Med Plant Res 3:105–111. https://doi.org/10.1002/jlcr.1579


Chao CY, Liu WH, Wu JJ et al (2015) Phytochemical profile, antioxidative and antiinflammatory potentials of Gynura bicolor DC. J Sci Food Agr 95:1088–1093. https://doi.org/10.1002/jsfa.6902


Chen J, Lu H, Fang LX et al (2017) Detection and toxicity evaluation of pyrrolizidine alkaloids in medicinal plants Gynura bicolor and Gynura divaricata collected from different Chinese locations. Chem Biodivers 14:e1600221. https://doi.org/10.1002/cbdv.201600221


Chen J, Mangelinckx S, Lü H, Wang ZT, Li WL, De Kimpe N (2015) Profiling and of Gynura bicolor and G. divaricata collected from different Chinese origins. Chem Biodivers 12:96–115. https://doi.org/10.1002/cbdv.201400134


Chen J, Mangelinckx S, Ma L et al (2014) Caffeoylquinic acid derivatives isolated from the aerial parts of Gynura divaricata and their yeast alpha-glucosidase and PTP1B inhibitory activity. Fitoterapia 99:1–6. https://doi.org/10.1016/j.fitote.2014.08.015


Chen L, Li HQ, Song HT et al (2009a) A new cerebroside from Gynura divaricata. Fitoterapia 80:517–520. https://doi.org/10.1080/14786410902836677


Chen L, Wang JJ, Song HT, Zhang GG, Qin LP (2009b) New cytotoxic cerebroside from Gynura divaricata. Chin Chem Lett 20:1091–1093. https://doi.org/10.1080/14786410902836677


Chen L, Wang JJ, Zhang GG, Song HT, Qin LP (2009c) A new cerebroside from Gynura divaricata. Fitoterapia 23:1330–1336. https://doi.org/10.1080/14786410902836677


Chen YL (1999) Flora of China. Science, Beijing, p 309


Chou SC, Chuang LM, Lee SS (2012) Hypoglycemic constituents of Gynura divaricata subsp. Formosana. Nat Prod Comm 7:221–222. https://doi.org/10.4155/FMC.11.184


Debergh P, Harbaoui Y, Lemeur R (1981) Mass propagation of Globe artichoke (Cynara scolymus): evaluation of different hypotheses to overcome vitrification with special reference to water potential. Physiol Plant 53:181–187. https://doi.org/10.1111/j.1399-3054.1981.tb04130.x


Deng YX, Chen YS, Zhang WR, Chen B, Qiu XM, He LH (2011) Polysaccharide from Gynura divaricata modulates the activities of intestinal disaccharidases in streptozotocin-induced diabetic rats. Br J Nutr 106:1323–1329. https://doi.org/10.1017/S0007114511001693


Devkota HP, Aftab T (eds) (2022) Medicinal plants of the Asteraceae family. Springer Nature, Singapore. https://doi.org/10.1007/978-981-19-6080-2


Divya K, Swathi Anuradha T, Jami SK et al (2008) Efficient regeneration from hypocotyl explants in three cotton cultivars. Biol Plant 52:201–208. https://doi.org/10.1007/s10535-008-0046-z


Dhar U, Joshi M (2005) Efficient plant regeneration protocol through callus for Saussurea obvallata (DC.) Edgew. (Asteraceae): effect of explant type, age and plant growth regulators. Plant Cell Rep 24:195–200. https://doi.org/10.1007/s00299-005-0932-1


Dong X, Zhao SX, Xu BQ, Zhang YQ (2019) Gynura divaricata ameliorates hepatic insulin resistance by modulating insulin signalling, maintaining glycolipid homeostasis and reducing inflammation in type 2 diabetic mice. Toxicol Res 8:928–937. https://doi.org/10.1039/C9TX00191C


Jie EY, Atong NS, Ahn WS, Ahn MS, Min BH, Kadzimin S, Kim SW (2019) High-frequency plant regeneration from embryogenic cell suspension cultures of Gynura procumbens. Plant Biotech Rep 13:27–33. https://doi.org/10.1007/s11816-018-0507-6


Keng CL, Yee LS, Pin PL (2009) Micropropagation of Gynura procumbens (Lour.) Merr. an important medicinal plant. Med Plant Res 3:105–111. https://doi.org/10.1002/jlcr.1579


Kevers C, Gaspar T (1985) Vitrification of carnation in vitro: changes in ethylene production, ACC level and capacity to convert ACC to ethylene. Plant Cell Tiss Org Cult 4:215–223. https://doi.org/10.1007/BF00040195


Kevers C, Coumans M, Coumans-Gillès MF et al (1984) Physiological and biochemical events leading to vitrification of plants cultured in vitro. Physiol Plant 61:69–76. https://doi.org/10.1111/j.1399-3054.1984.tb06102.x


Kowalski B, van Staden J (2001) Micropropagation of Podocarpus henkelii and P. elongatus. South Afr J Bot 67:362–366. https://doi.org/10.1016/S0254-6299(15)31142-X


Li J, Feng J, Wei H, Liu Q, Yang T, Hou S, Zhao Y, Zhang B, Yang C (2018) The aqueous extract of Gynura divaricata (L.) DC. improves glucose and lipid metabolism and ameliorates type 2 diabetes mellitus. Evid Based Complement Altern Med 2018(8686297). https://doi.org/10.1155/2018/8686297


Ma GH, Jian SG, Ren H (eds) (2021) Gynura divaricata (L.) DC. In: Plant Proliferation and Cultivation Techniques for Tropical Island Reefs. China Forestry Press, Beijing, pp 111–113. ISBN: 978-7-5219-0955-5 (in Chinese)


Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497. https://doi.org/10.1111/j.1399-3054.1962.tb08052.x


Roeder E, Eckert A, Wiedenfeld H (1996) Pyrrolizidine alkaloids from Cynura divaricata. Plant Med 62:386. https://doi.org/10.1055/s-2006-957921


Rosidah, Yam MF, Sadikun A, Ahmad M, Akowuah GA, Asmawi MZ (2009) Toxicology evaluation of standardized methanol extract of Gynura procumbens. J Ethnopharmacol 123:244–249. https://doi.org/10.1016/j.jep.2009.03.011


Shetty K, Curtis OF, Levin RE, Witkowsky R, Ang W (1995) Prevention of vitrification associated with in vitro shoot culture of oregano (Origanum vulgare) by Pseudomonas spp. J Plant Physiol 147:447–451. https://doi.org/10.1016/S0176-1617(11)82181-4


Shimizu Y, Maeda K, Kato M, Shimomura K (2010) Methyl jasmonate induces anthocyanin accumulation in Gynura bicolor cultured roots. Vitro Cell Dev Biol – Plant 46:460–465. https://doi.org/10.1007/s11627-010-9294-7


Sun Y, Gao C, Liu H et al (2023) Exploring the mechanism by which aqueous Gynura divaricata inhibits diabetic foot based on network pharmacology, molecular Docking and experimental verification. Mol Med 29:11. https://doi.org/10.1186/s10020-023-00605-w


Valpuesta V, Botella MA (2004) Biosynthesis of L-ascorbic acid in plants: new pathways for an old antioxidant. Trends Plant Sci 9:573–577. https://doi.org/10.1016/j.tplants.2004.10.002


Vanijajiva O, Kadereit JW (2011) A revision of Gynura (Asteraceae: Senecioneae). J Syst Evol 49:285–314. https://doi.org/10.1111/j.1759-6831.2011.00139.x


Wan C, Yu Y, Zhou S, Tian S, Cao S (2011a) Isolation and identification of phenolic compounds from Gynura divaricata leaves. Phcog Mag 7:101–108. https://doi.org/10.4103/0973-1296.80666


Wan CP, Yu YY, Zhou SR, Liu W, Tian SG, Cao SW (2011b) Antioxidant activity and free radical-scavenging capacity of Gynura divaricata leaf extracts at different temperatures. Phcog Mag 7:40–45. https://doi.org/10.4103/0973-1296.75900


Williams RR, Taji AM (1991) Effect of temperature, gel concentration and cytokinins on vitrification of Olearia microdisca (J.M. Black) in vitro shoot cultures. Plant Cell Tiss Org Cult 26:1–6. https://doi.org/10.1007/BF00116601


Wu KL, Xiong YP, Teixeira da Silva JA, Zeng SJ, Ma GH (2023) Shoot proliferation and de Novo shoot organogenesis induction in Pandanus tectorius Sol. – New insights for in vitro plant regeneration. Vitro Cell Dev Biol – Plant 59:354–364. https://doi.org/10.1007/s11627-023-10338-4


Wu TT, Zhou XT, Deng YF, Jing Q, Li M, Yuan LJ (2011) In vitro studies of Gynura divaricata (L.) DC extracts as inhibitors of key enzymes relevant for type 2 diabetes and hypertension. J Ethnopharmacol 136:305–308. https://doi.org/10.1016/j.jep.2011.04.059


Xu BQ, Yang P, Zhang YQ (2015) Hypoglycemic activities of lyophilized powder of Gynura divaricata by improving antioxidant potential and insulin signaling in type 2 diabetic mice. Food Nutr Res 59:29652. https://doi.org/10.3402/fnr.v59.29652


Xu BQ, Zhang YQ (2017) Bioactive components of Gynura divaricata and its potential use in health, food and medicine: A mini-review. Afr J Tradit Complem Med 14:113–127. https://doi.org/10.21010/ajtcam.v14i3.12


Ye XY, Xiong L, Fu QF, Wang Y, Wang YW, Zhang KL, Yang J, Kantawong F, Kumsaiyai W, Zhou J, Lan C, Wu JM, Zeng J (2022) Chemical characterization and DPP-IV inhibitory activity evaluation of tripeptides from Gynura divaricata (L.) DC. J Ethnopharmacol 292:115203. https://doi.org/10.1016/j.jep.2022.115203


Yen CH, Lai CC, Shia TH et al (2018) Gynura divaricata attenuates tumor growth and tumor relapse after cisplatin therapy in HCC xenograft model through suppression of cancer stem cell growth and Wnt/beta-catenin signaling. J Ethnopharmacol 213:366–375. https://doi.org/10.1016/j.jep.2017.07.019


Yin XL, Xu BQ, Zhang YQ (2018) Gynura divaricata rich in 3, 5-/4, 5-dicaffeoylquinic acid and chlorogenic acid reduces islet cell apoptosis and improves pancreatic function in type 2 diabetic mice. Nutr Metab 15:73. https://doi.org/10.1186/s12986-018-0310-y


Zahra AA, Kadir FA, Mahmood AA, Al Hadi AA, Suzy SM, Sabri SZ, Latif II, Ketuly KA (2011) Acute toxicity study and wound healing potential of Gynura procumbens leaf extract in rats. J Med Plant Res 5:2551–2558. https://doi.org/10.1016/j.jep.2011.04.064


Zhang N, Zong XC (2023) In vitro culture and regeneration system of Gynura divaricata leaves. Mol Plant Breeding. https://kns.cnki.net/kcms/detail/46.1068.S.20220507.1736.026.html


Zhang XF, Tan BKH (2000) Effects of an ethanolic extract of Gynura procumbens on serum glucose, cholesterol and triglyceride levels in normal and streptozotocin-induced diabetic rats. Singap Med J 41:9–13 PMID: 10783673


Zeng YJ, Xiong YP, Liu JY, Chen XH, Li JR, Jian SG, Ren H, Zhang XH, Li Y, Bian Z, Wu KL, Zeng SJ, Teixeira da Silva JA, Ma GH (2024) Physiological characteristics and transcriptomic analysis of response patterns of Gynura divaricata (L.) DC. cultured in vitro under NaCl stress. Curr Plant Biol 39:100379. https://doi.org/10.1016/j.cpb.2024.100379


Zhou XT, Deng YF, Jing Q, Li M, Yuan LJ (2011) In vitro studies of Gynura divaricata (L.) DC extracts as inhibitors of key enzymes relevant for type 2 diabetes and hypertension. J Ethnopharmacol 136:305–308. https://doi.org/10.1016/j.jep.2011.04.059




 


Author Information


South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China