Keywords:
Basal area, Forest stand structure, Tree biomass, Tree carbon storage, Biodiversity indices
In the present study, the tree species phytosociological attributes, tree density, basal area, and tree biomass carbon (above- and below-ground) distribution pattern was explored in the undisturbed and disturbed forest sites in Dibru-Saikhowa biosphere reserve of Assam, northeast India. The study area is globally recognized biodiversity hotspots in India and situated in the flood plain of the Brahmaputra and Lohit River. The tree species attributes like tree density, basal area, and tree biomass carbon were estimated in three undisturbed and disturbed forest sites. Principal component analysis, redundancy analysis, and correlation analyses were conducted to explore the relationship between biodiversity indices, forest stands characteristic, and tree biomass. The undisturbed forest stand showed the highest biological attributes (29–39 species and 25–33 genera) compare to disturbed forest stands (27–32 species and 21–27 genera). Combretaceae, Lauraceae, Phyllanthaceae, Salicaceae, Myrtaceae, and Moraceae has shown a higher importance value index. The biodiversity indices were significantly higher in undisturbed forest stands and the Shannon–Wiener diversity index (H′) ranged from 1.97 to 3.57, Simpson index (Cd) ranged from 0.76 to 0.88, and evenness index (e) ranged from 0.65 to 0.97 in all the stands. The mean tree density and forest basal area were significantly higher in the undisturbed forest (796.66 ha−1 and 56.56 m2 ha−1, respectively) compared to disturbed forest stands (436.66 ha−1 and 38.91 m2 ha−1, respectively). Tree biomass carbon in undisturbed forest (184–214.62 Mg C ha−1) was also more than disturbed forests (124–137.53 Mg C ha−1). Moreover, the biomass carbon was greatly affected by the tree composition, diversity, density, and the disturbances in forest stands. The present study will provide the baseline information for effective and sustainable tree species diversity conservation and evaluate tree carbon stock in the Dibru-Saikhowa biosphere reserve.
(*Only SPR Life Members can get full access.)
The author thanks Director of GBPIHED Kosi-Katarmal Almora, Scientist In-Charge GBPIHED NE Unit Itanagar Arunanchal Pradesh, Dr. Vaibhav Chandra Mathur, DFO Tinsukia Wildlife Forest Division, Government of Assam and Ministry of Environment and Forest (NNRMS Division) for providing fellowship during the research project. I extend my gratitude to Prof. S.C. Garkoti, Prof. P.K. Joshi, Dr. Rajeev Lochan Semwal, and Mr. Ambuj Mishra, School of Environment sciences Jawaharlal Nehru Universality for their encouragement and fruitful suggestions. Many thanks to Dr. Shivaji Chaudhary for encouraging me to take up this work. Further, I would like to provide my hearty thanks to Forest Range Officers and other staff of the Forest Department for necessary support. Also, the anonymous reviewers and editor are thanked for exhaustively going through the manuscript and giving valuable suggestions to improve the quality of the manuscript.