*Article not assigned to an issue yet
Kour Divjot, Ramniwas Seema, Kumar Sanjeev, Rai Ashutosh Kumar, Singh Sangram, Rustagi Sarvesh, Yadav Ajar Nath
Keywords: n Azollan , Climate change, Cyanobacterium, Biodiversity, Stress mitigation, Symbiotic association
The increasing industrialization, road and air transport, and intensive agriculture practices to meet the demands of a growing population have become a threat to the environment globally. The utilization of agrochemicals in an inappropriate way to enhance productivity has depleted the soil fertility, and biodiversity and negatively affected the climate. Keeping in view the present scenario, adoption of sustainable, economically and socially viable approaches are of utmost importance. Azolla is a free floating fern of great potential as a step towards achieving agro-environmental sustainability. Carbon neutral system has been the need of the day. Various species of Azolla have been reported from tropical and subtropical areas of the world. The symbiotic association of Azolla with nitrogen fixing blue green alga, Anabaena is an important co-evolved system and important contributor to biotechnological fields. Along with biological nitrogen fixation, cyanobacteria and Azolla promote plant growth as their extract contains different plant growth-promoting substances such as auxins, cytokinins, and gibberellins. Different species of Azolla play an amazing role for plant growth promotion as biofertilizers and for amelioration of abiotic stress. The use of Azolla is thus an innovative technology towards clean and green environment as they can sequester a lot of carbon dioxide in their bodies. The present review deals with diversity, distribution, and biotechnological applications of Azolla in different sectors, including agriculture, industry, and the environment.
Abalos EB, Sampaga LO (2013) Growth and yield of banana var. lakatan as influenced by Azospirillum spp. inoculation and vermicompost. E Int Sci Res J 5:83–95
Aber JS, Owens LC, Aber SW, Eddy T, Schulenberg JH, Sundberg M, Penner RL II (2010) Recent Azolla bloom at cheyenne bottoms. Trans Kans Acad Sci 113:56–63. https://doi.org/10.1660/062.113.0204
Abraham G, Pandey N, Mishra V, Chaudhary AA, Ahmad A, Singh R, Singh P (2013) Development of SCAR based molecular markers for identification of different species of Azolla. Indian J Biotechnol 12:489–492
Adhya T, Bharati K, Mohanty SR, Ramakrishnan B, Rao VR, Sethunathan N, Wassmann R (2000) Methane emission from rice fields at Cuttack, India. Nutr Cycling Agroecosyst 58:95–105. https://doi.org/10.1023/A:1009886317629
Ahluwalia A, Pabby A, Dua S (2002) Azolla: a green gold mine with diversified applications. Indian Fern J 19:1–9
Ahmad N, Tariq H (2021) Azolla as waste decomposer and bio-fertilizer: a review. J Appl Res in Plant Sci 2:108–116. https://doi.org/10.38211/joarps.2021.2.1.14
Ahmad MI, Senusi W, Binhweel F, Alsaadi S (2023) Optimization of base catalytic transesterification toward maximum biodiesel yield from Azolla filiculoides macroalgae feedstock. Ind Crops Prod 197:116590. https://doi.org/10.1016/j.indcrop.2023.116590
Akhtar M, Sarwar N, Ashraf A, Ejaz A, Ali S, Rizwan M (2020) Beneficial role of Azolla sp. in paddy soils and their use as bioremediators in polluted aqueous environments: implications and future perspectives. Arch Agron Soil Sci 67:1242–1255. https://doi.org/10.1080/03650340.2020.1786885
Alfasane MA, Bhuiyan RA, Jolly JA, Islam S (2019) Azolla microphylla Kaulf. (Salviniaceae): a new pteridophytic record for Bangladesh. Bangladesh J Plant Taxon 26:325–327
Al-Sayed HM, Ali AM, Mohamed MA, Ibrahim MF (2022) Combined effect of prickly pear waste biochar and Azolla on soil fertility, growth, and yield of Roselle (Hibiscus sabdariffa L.) plants. J Soil Sci Plant Nutr 22:3541–3552. https://doi.org/10.1007/s42729-022-00908-7
Barreto R, Charudattan R, Pomella A, Hanada R (2000) Biological control of neotropical aquatic weeds with fungi. Crop Protect 19:697–703. https://doi.org/10.1016/S0261-2194(00)00093-4
Bharati K, Mohanty S, Singh D, Rao V, Adhya T (2000) Influence of incorporation or dual cropping of Azolla on methane emission from a flooded alluvial soil planted to rice in eastern India. Agri Ecosyst Environ 79:73–83. https://doi.org/10.1016/S0167-8809(99)00148-6
Brinkhuis H, Bijl P (2014) Fern of the future? GeoQ 10:5–6
Bujak A, Bujak A (2014) The arctic Azolla event. Geoscientist 24:10–15
Caiola MG, Forni C (1999) The Hard Life of Prokaryotes in the Leaf Cavities of Azolla. In: Seckbach J (ed) Enigmatic Microorganisms and Life in Extreme Environments. Springer, Netherlands, Dordrecht, pp 629–639
Carrapico F, Teixeira G, Diniz MA (2002) Azolla as a biofertilizer in Africa: a challenge for the future. Biotechnology of biofertilizers. J Agar Sci 23(3–4):120–138
Carrapiço F (2010) Azolla as a superorganism. Its implication in symbiotic studies. In: Seckbach J, Grube M (eds) Symbioses and Stress: Joint Ventures in Biology. Springer, Netherlands, Dordrecht, pp 225–241
Carrapiço F (2017) The Azolla–Anabaena–Bacteria association: A case of symbiotic abduction? Algal and cyanobacteria symbioses. World Scientific, Europe World Sci, pp 329–345
Carrapiço F (1991) Are bacteria the third partner of the Azolla-Anabaena symbiosis? In: Polsinelli M, Materassi R, Vincenzini M (eds) Nitrogen fixation: proceedings of the fifth international symposium on nitrogen fixation with non-legumes, Florence, Italy, 10–14 September 1990. Springer Netherlands, Dordrecht, pp 453–456
Carrapico F (2002) Azolla-anabaena-bacteria system as a natural microcosm vol 4495. International Symposium on Optical Science and Technology. SPIE, pp 261–265 https://doi.org/10.1117/12.454763
Ciais P, Sabine C, Bala G, Bopp L, Brovkin V, Canadell J, Chhabra A, DeFries R, Galloway J, Heimann M (2014) Carbon and other biogeochemical cycles. In: Climate change 2013: the physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, pp 465–570
Cohen M, Meziane T, Yamasaki H (2004) A photocarotenogenic Rhodococcus sp. isolated from the symbiotic fern Azolla. Endocytobiosis Cell Res 15:350–355
Dawson JJ, Smith P (2007) Carbon losses from soil and its consequences for land-use management. Sci Total Environ 382:165–190. https://doi.org/10.1016/j.scitotenv.2007.03.023
de Macale MAR, Vlek PL (2004) The role of Azolla cover in improving the nitrogen use efficiency of lowland rice. Plant Soil 263:311–321. https://doi.org/10.1023/B:PLSO.0000047742.67467.50
Devaprakash M, Thirumalaivasan R, Sivakumar N, Shyamkumar R (2024) Cyanobacterial interactions and symbiosis. In: Mishra AK, Singh SS (eds) Cyanobacteria. Academic Press, pp 425–489. https://doi.org/10.1016/B978-0-443-13231-5.00004-0
Elsheikh S, Eltanahy E (2024) Overview of secondary metabolites in cyanobacteria: a potential source of plant growth-promoting and abiotic stress resistance. In: Abd-Elsalam KA, Mohamed HI (eds) Bacterial secondary metabolites. Elsevier, pp 29–57
Falloon P, Betts R (2010) Climate impacts on European agriculture and water management in the context of adaptation and mitigation—the importance of an integrated approach. Sci Total Environ 408:5667–5687. https://doi.org/10.1016/j.scitotenv.2009.05.002
Feng Y, Sun H, Xue L, Liu Y, Gao Q, Lu K, Yang L (2017) Biochar applied at an appropriate rate can avoid increasing NH3 volatilization dramatically in rice paddy soil. Chemosphere 168:1277–1284. https://doi.org/10.1016/j.chemosphere.2016.11.151
Forni C, Riov J, Caiola MG, Tel-Or E (1992) Indole-3-acetic acid (IAA) production by Arthrobacter species isolated from Azolla. Microbiology 138:377–381. https://doi.org/10.1099/00221287-138-2-377
Gago J, Douthe C, Coopman RE, Gallego PP, Ribas-Carbo M, Flexas J, Escalona J, Medrano H (2015) UAVs challenge to assess water stress for sustainable agriculture. Agric Water Manag 153:9–19. https://doi.org/10.1016/j.agwat.2015.01.020
Galloway JN, Townsend AR, Erisman JW, Bekunda M, Cai Z, Freney JR, Martinelli LA, Seitzinger SP, Sutton MA (2008) Transformation of the nitrogen cycle: recent trends, questions, and potential solutions. Science 320:889–892. https://doi.org/10.1126/science.1136674
Gevrek MN, Samanci B, Yagmur B, Arabaci O, Özkaynak E (2004) Studies on the adaptation of Azolla mexicana in the aegean and the mediterranean regions. Plant Prod Sci 7:50–54
Gilbert N (2012) Water under pressure: a UN analysis sets out global water-management concerns ahead of earth summit. Nature 483:256–258. https://doi.org/10.1626/pps.7.50
Gunawardana D (2019) An exploration of common greenhouse gas emissions by the cyanobiont of the Azolla-Nostoc symbiosis and clues as to nod factors in cyanobacteria. Plants 8:587. https://doi.org/10.3390/plants8120587
Hasan MR, Rina C (2009) Use of algae and aquatic macrophytes as feed in small-scale aquaculture: A review. vol 531. Food and Agriculture Organization of the United Nations (FAO)
Hashemloian BD, Azimi AA (2009) Alien and exotic Azolla in northern Iran. Afr J Biotechnol 8:187–190
Houghton J (2001) Climate Change 2001: The Scientific Basis
Huang X, Peng X, Zhang L, Chen S, Cheng L, Liu G (2014) Bovine serum albumin in saliva mediates grazing response in Leymus chinensis revealed by RNA sequencing. BMC Genom 15:1–17. https://doi.org/10.1186/1471-2164-15-583
Hussain S, Peng S, Fahad S, Khaliq A, Huang J, Cui K, Nie L (2015) Rice management interventions to mitigate greenhouse gas emissions: a review. Environ Sci Pollut Res 22:3342–3360. https://doi.org/10.1007/s11356-014-3760-4
Jama A, Widiastuti DP, Gafur S, Davis JG (2023) Azolla biofertilizer is an effective replacement for urea fertilizer in vegetable crops. Sustainability 15:6045. https://doi.org/10.3390/su15076045
Jayanthi D, Meghana SJ, Rao HG, Shravya S (2023) Cyanobacterial symbiosis with bryophytes. In: Dharumadurai D (ed) Microbial Symbionts. Academic Press, pp 15–27
Jha Y, Subramanian RB (2018) From interaction to gene induction: An eco-friendly mechanism of pgpr-mediated stress management in the plant. In: Egamberdieva D, Ahmad P (eds) Plant Microbiome: Stress Response. Springer Singapore, Singapore, pp 217–232
Kannaiyan S, Kumar K (2005) Azolla biofertilizer for sustainable rice production. Daya Books
Kern MA, Vlek PL (2007) Azolla as a technology to improve the nitrogen use efficiency of lowland rice. Agric Rural Dev 2:57–59
Kollah B, Patra AK, Mohanty SR (2016) Aquatic microphylla Azolla: a perspective paradigm for sustainable agriculture, environment and global climate change. Environ Sci Pollut Res 23:4358–4369. https://doi.org/10.1007/s11356-015-5857-9
Korsa G, Alemu D, Ayele A (2024) Azolla plant production and their potential applications. Int J Agron 2024:1–12. https://doi.org/10.1155/2024/1716440
Kumar BL, Gopal DVRS (2015) Effective role of indigenous microorganisms for sustainable environment. 3 Biotech 5:867–876. https://doi.org/10.1007/s13205-015-0293-6
Kumar U, Nayak AK, Panneerselvam P, Kumar A, Mohanty S, Shahid M, Sahoo A, Kaviraj M, Priya H, Jambhulkar NN (2019) Cyanobiont diversity in six Azolla spp. and relation to Azolla-nutrient profiling. Planta 249:1435–1447. https://doi.org/10.1007/s00425-019-03093-7
Ladha JK, Pathak H, Krupnik TJ, Six J, van Kessel C (2005) Efficiency of fertilizer nitrogen in cereal production: retrospects and prospects. Adv Agron 87:85–156. https://doi.org/10.1016/S0065-2113(05)87003-8
Lassaletta L, Billen G, Grizzetti B, Anglade J, Garnier J (2014) 50 year trends in nitrogen use efficiency of world cropping systems: the relationship between yield and nitrogen input to cropland. Environ Res Lett 9:105011. https://doi.org/10.1088/1748-9326/9/10/105011
Li Q, Yang A, Wang Z, Roelcke M, Chen X, Zhang F, Pasda G, Zerulla W, Wissemeier AH, Liu X (2015) Effect of a new urease inhibitor on ammonia volatilization and nitrogen utilization in wheat in north and northwest China. Field Crop Res 175:96–105. https://doi.org/10.1016/j.fcr.2015.02.005
Lindblad P, Bergman B, Nierzwicki-Bauer S (1991) Immunocytochemical localization of nitrogenase in bacteria symbiotically associated with Azolla spp. Appl Environ Microbiol 57:3637–3640. https://doi.org/10.1128/aem.57.12.3637-3640.1991
Liu X, Zhang Y, Han W, Tang A, Shen J, Cui Z, Vitousek P, Erisman JW, Goulding K, Christie P (2013) Enhanced nitrogen deposition over China. Nature 494:459–462. https://doi.org/10.1038/nature11917
Madeira PT, Hill MP, Dray F Jr, Coetzee J, Paterson I, Tipping P (2016) Molecular identification of Azolla invasions in Africa: the Azolla specialist, Stenopelmus rufinasus proves to be an excellent taxonomist. South Afr J Bot 105:299–305. https://doi.org/10.1016/j.sajb.2016.03.007
Madeira PT, Dray FA, Tipping PW (2019) Molecular identification of Azolla in the yangtze river watershed. China Aquat Bot 159:103149. https://doi.org/10.1016/j.aquabot.2019.103149
Maham SG, Rahimi A, Subramanian S, Smith DL (2020) The environmental impacts of organic greenhouse tomato production based on the nitrogen-fixing plant (Azolla). J Clean Prod 245:118679. https://doi.org/10.1016/j.jclepro.2019.118679
Mahmood A, Khalil MI, Darweesh KF (2020) Morphological and molecular phylogenetic analyses reveal a new record to the flora of Iraq: Azolla filiculoides. Zanco J Pure Appl Sci 32:95–103. https://doi.org/10.21271/zjpas
Malyan SK, Bhatia A, Kumar SS, Fagodiya RK, Pugazhendhi A, Duc PA (2019a) Mitigation of greenhouse gas intensity by supplementing with Azolla and moderating the dose of nitrogen fertilizer. Biocatal Agric Biotechnol 20:101266. https://doi.org/10.1016/j.bcab.2019.101266
Malyan SK, Bhatia A, Tomer R, Harit RC, Jain N, Bhowmik A, Kaushik R (2021) Mitigation of yield-scaled greenhouse gas emissions from irrigated rice through Azolla, Blue-green algae, and plant growth–promoting bacteria. Environ Sci Pollut Res 28:51425–51439. https://doi.org/10.1007/s11356-021-14210-z
Marzouk SH, Tindwa HJ, Amuri NA, Semoka JM (2023) An overview of underutilized benefits derived from Azolla as a promising biofertilizer in lowland rice production. Heliyon 9:e13040. https://doi.org/10.1016/j.heliyon.2023.e13040
Masoodi A, Khan FA (2012) A new record to the invasive alien flora of India: Azolla cristata. Natl Acad Sci Lett 35:493–495. https://doi.org/10.1007/s40009-012-0084-0
Maswada HF, Abd El-Razek UA, El-Sheshtawy A-NA, Mazrou YS (2021) Effect of Azolla filiculoides on growth, physiological and yield attributes of maize grown under water and nitrogen deficiencies. J Plant Growth Regul 40:558–573. https://doi.org/10.1007/s00344-020-10120-5
McConnachie A, De Wit M, Hill M, Byrne M (2003) Economic evaluation of the successful biological control of Azolla filiculoides in South Africa. Biol Control 28:25–32. https://doi.org/10.1016/S1049-9644(03)00056-2
Montzka SA, Dlugokencky EJ, Butler JH (2011) Non-CO2 greenhouse gases and climate change. Nature 476:43–50. https://doi.org/10.1038/nature10322
Myhre G, Shindell D, Bréon F-M et al (2013) Anthropogenic and natural radiative forcing. Climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, UK, pp 659–740
Nakane T, Matsuhisa T, Arai Y, Masuda K, Takano A, Shiojima K (2003) Study on aquatic fern: terpenoids of Azolla japonica. Nat Med 57:201
Nam K-W, Yoon D-H (2008) Usage of Azolla spp. as a biofertilizer on the environmental-friendly agriculture. Korean J Plant Res 21:230–235
Nierzwicki-Bauer SA, Aulfinger H (1991) Occurrence and ultrastructural characterization of bacteria in association with and isolated from Azolla caroliniana. Appl Environ Microbiol 57:3629–3636. https://doi.org/10.1128/aem.57.12.3629-3636.1991
Omer AM (2008) Energy, environment and sustainable development. Renew Sustain Energy Rev 12:2265–2300. https://doi.org/10.1016/j.rser.2007.05.001
Pabby A, Prasanna R, Singh P (2003) Azolla-Anabaena symbiosis-from traditional agriculture to biotechnology. Indian J Biotechnol 2:26–37
Pathak H, Bhatia A, Jain N, Aggarwal P (2010) Greenhouse gas emission and mitigation in Indian agriculture–a review. ING Bull Reg Assess React Nitrogen Bull 19:1–34
Peng S, Buresh RJ, Huang J, Zhong X, Zou Y, Yang J, Wang G, Liu Y, Hu R, Tang Q (2010) Improving nitrogen fertilization in rice by sitespecific N management. A Rev Agron Sustain Develop 30:649–656. https://doi.org/10.1051/agro/2010002
Pereira A, Figueiredo A, Barroso J, Pedro L, Carrapiço F (2009) Volatile compounds from the symbiotic system Azolla filiculoides-Anabaena azollae bacteria. Plant Biosyst 143:268–274. https://doi.org/10.1080/11263500902722477
Peters G, Meeks J (1989) The Azolla-Anabaena symbiosis: basic biology. Annu Rev Plant Biol 40:193–210
Plazinski J, Taylor R, Shaw W, Croft L, Rolfe BG, Gunning BE (1990) Isolation of Agrobacterium sp., strain from the Azolla leaf cavity. FEMS Microbiol Lett 70:55–59. https://doi.org/10.1111/j.1574-6968.1990.tb03777.x
Prokopuk M (2016) New record of Azolla caroliniana in water bodies of kiev. Hydrobiol J 52:54–58
Malyan SK, Singh S, Bachheti A, Chahar M, Sah MK, Narender et al (2019b) Cyanobacteria: a perspective paradigm for agriculture and environment. In: Rastegari AA, Yadav AN, Yadav N, (eds) New and future developments in microbial biotechnology and bioengineering. Elsevier, Amsterdam, pp 215–224. https://doi.org/10.1016/B978-0-12-820526-6.00014-2
Raja W, Rathaur P, John SA, Ramteke PW (2012) Azolla: an aquatic pteridophyte with great potential. Int J Res Biol Sci 2:68–72
Ran L, Larsson J, Vigil-Stenman T, Nylander JA, Ininbergs K, Zheng W-W, Lapidus A, Lowry S, Haselkorn R, Bergman B (2010) Genome erosion in a nitrogen-fixing vertically transmitted endosymbiotic multicellular cyanobacterium. PLoS ONE 5:e11486. https://doi.org/10.1371/journal.pone.0011486
Rani M, Jha A (2019) Potential of Azolla in Sustainable Agriculture and Climate Change Mitigation. In: Bajpai O and Khan K (ed) Recent trends in tropical plant research pp 27–37
Razavipour T, Moghaddam SS, Doaei S, Noorhosseini SA, Damalas CA (2018) Azolla (Azolla filiculoides) compost improves grain yield of rice (Oryza sativa L.) under different irrigation regimes. Agric Water Manag 209:1–10. https://doi.org/10.1016/j.agwat.2018.05.020
Ripley BS, Kiguli LN, Barker NP, Grobbelaar JU (2003) Azolla filiculoides as a biofertiliser of wheat under dry-land soil conditions. South Afr J Bot 69:295–300. https://doi.org/10.1016/S0254-6299(15)30317-3
Roy D, Pakhira M, Bera S (2016) A review on biology, cultivation and utilization of Azolla. Adv Life Sci 5:11–15
Rusdiyana E, Sutrisno E, Harsono I (2024) A bibliometric review of sustainable agriculture in rural development. West Sci Interdiscip Stud 2:630–637
Serag MS, El-Hakeem A, Badway M, Mousa MA (2000) On the ecology of Azolla filiculoides Lam. in Damietta district. Egypt Limnol Ecol Manag Inland Waters 30:73–81
Sholkamy EN, El-Komy HM, Ali HM (2015) Enhancement of soybean (Glycine max L.) growth by biofertilizers of Nostoc muscorum and Nostoc rivulare. Pak J Bot 47:1199–1204
Smith P, Martino D, Cai Z, Gwary D, Janzen H, Kumar P, McCarl B, Ogle S, O’Mara F, Rice C (2008) Greenhouse gas mitigation in agriculture. Philosophical Transact Royal Soc b: Biol Sci 363:789–813
Sood A, Ahluwalia A (2009) Cyanobacterial–plant symbioses with emphasis on Azolla-Anabaena symbiotic system. Indian Fern J 26:166–178
Sood A, Uniyal PL, Prasanna R, Ahluwalia AS (2012) Phytoremediation potential of aquatic macrophyte, Azolla. Ambio 41:122–137. https://doi.org/10.1007/s13280-011-0159-z
Steffen W, Richardson K, Rockström J, Cornell SE, Fetzer I, Bennett EM, Biggs R, Carpenter SR, De Vries W, De Wit CA (2015) Planetary boundaries: guiding human development on a changing planet. Science 347:6223. https://doi.org/10.1126/science.1259855
Strasburger E (1873) Über Azolla. 86 p.+ Tafel I-VII. Herman Dabis Verlag, Jena
Sun H, Zhang H, Powlson D, Min J, Shi W (2015) Rice production, nitrous oxide emission and ammonia volatilization as impacted by the nitrification inhibitor 2-chloro-6-(trichloromethyl)-pyridine. Field Crop Res 173:1–7. https://doi.org/10.1016/j.fcr.2014.12.012
Surenthiran S, Loganathan P (2012) Carbon sequestration of Azolla and soil nitrogen mineralization. In: Proceedings of International Forestry and Environment Symposium.
Szczesniak E, Blachuta J, Krukowski M, Picinska-Faltynowicz J (2009) Distribution of Azolla filiculoides Lam.[Azollaceae] in Poland. Acta Soc Bot Pol 78:241–246
Taghilou S, Peyda M, Mehrasbi M (2023) A review on the significance of Azolla for water and wastewater treatment. Desalin Water Treat 293:138–149
Thapa P, Poudel K (2021) Azolla: potential biofertilizer for increasing rice productivity, and government policy for implementation. J Waste Biomass Manag 3:62–68. https://doi.org/10.26480/jwbm.02.2021.62.68
Ti C, Xia L, Chang SX, Yan X (2019) Potential for mitigating global agricultural ammonia emission: a meta-analysis. Environ Pollut 245:141–148. https://doi.org/10.1016/j.envpol.2018.10.124
Tilman D, Cassman KG, Matson PA, Naylor R, Polasky S (2002) Agricultural sustainability and intensive production practices. Nature 418:671–677. https://doi.org/10.1038/nature01014
Vajda V, McLoughlin S (2005) A new maastrichtian-paleocene Azolla species from of Bolivia, with a comparison of the global record of coeval Azolla microfossils. Alcheringa 29:305–329
Van Nguyen N, Ferrero A (2006) Meeting the challenges of global rice production. Paddy Water Environ, 4:1–9. https://doi.org/10.1007/s10333-005-0031-5
Wang R, Peng B, Huang K (2015) The research progress of CO2 sequestration by algal bio-fertilizer in China. J CO2 Util 11:67–70
Winstead D, Di Gioia F, Jauregui M, Jacobson M (2023) Nutritional properties of raw and cooked Azolla caroliniana Willd., an aquatic wild edible plant. Food Sci Nutr 12:2050–2060. https://doi.org/10.1002/fsn3.3904
Xu H, Zhu B, Liu J, Li D, Yang Y, Zhang K, Jiang Y, Hu Y, Zeng Z (2017) Azolla planting reduces methane emission and nitrogen fertilizer application in double rice cropping system in southern China. Agron Sustain Develop 37:29. https://doi.org/10.1007/s13593-017-0440-z
Yadav R, Abraham G, Singh Y, Singh P (2014) Advancements in the utilization of Azolla-Anabaena system in relation to sustainable agricultural practices. In: Proc Indian Natl Sci Acad 80(2):301–316
Yang YD, Xu HS, Li DY, Liu JN, Nie JW, Zeng Z-H (2019) Methane emissions responding to Azolla inoculation combined with midseason aeration and N fertilization in a double-rice cropping system. Environ Sci Pollut Res 26:20352–20363. https://doi.org/10.1007/s11356-019-05342-4
Yang G, Ji H, Sheng J, Zhang Y, Feng Y, Guo Z, Chen L (2020) Combining Azolla and urease inhibitor to reduce ammonia volatilization and increase nitrogen use efficiency and grain yield of rice. Sci Total Environ 743:140799. https://doi.org/10.1016/j.scitotenv.2020.140799
Yao Y, Zhang M, Tian Y, Zhao M, Zeng K, Zhang B, Zhao M, Yin B (2018) Azolla biofertilizer for improving low nitrogen use efficiency in an intensive rice cropping system. Field Crop Res 216:158–164. https://doi.org/10.1016/j.fcr.2017.11.020
Ying Z, Boeckx P, Chen GX, Van Cleemput O (2000) Influence of Azolla on CH4 emission from rice fields. In: Wassmann R, Lantin RS, Neue H-U (eds) Methane Emissions from Major Rice Ecosystems in Asia. Springer, Netherlands, Dordrecht, pp 321–326
Kour D, Rana KL, Yadav AN, Yadav N, Kumar M, Kumar V et al (2020) Microbial biofertilizers: bioresources and eco-friendly technologies for agricultural and environmental sustainability. Biocatal Agric Biotechnol 23:101487. https://doi.org/10.1016/j.bcab.2019.101487
Singh J, Yadav AN (2020) Natural bioactive products in sustainable agriculture. Springer, Singapore
Rastegari AA, Yadav AN, Yadav N (2020a) New and future developments in microbial biotechnology and bioengineering: trends of microbial biotechnology for sustainable agriculture and biomedicine systems: perspectives for human health. Elsevier, Amsterdam
Rastegari AA, Yadav AN, Yadav N (2020b) New and future developments in microbial biotechnology and bioengineering: trends of microbial biotechnology for sustainable agriculture and biomedicine systems: diversity and functional perspectives. Elsevier, Amsterdam
Department of Biotechnology, University Centre for Research and Development, Chandigarh University, Mohali, India