Characterization of terminal heat tolerance in bread wheat (Triticum aestivum L.) using differences in agronomic traits as potential selection criteria


Research Articles | Published:

Print ISSN : 0970-4078.
Online ISSN : 2229-4473.
Website:www.vegetosindia.org
Pub Email: contact@vegetosindia.org
Doi: 10.1007/s42535-019-00023-6
First Page: 200
Last Page: 208
Views: 1765


Keywords: Terminal heat stress, TS, LS, dTPP, dGWPP, dGNPP, dBMPP, dSL, Wheat


Abstract


The present study was undertaken to determine effectiveness of selection for genotypes tolerant to heat stress using differences in tiller per plant (dTPP), grain weight per plant (dGWPP), grain number per plant (dGNPP), biomass per plant (dBMPP) and spike length (dSL) under the optimum and late sown field condition. A Recombinant Inbred Line (RIL) mapping population derived from theheat sensitive genotype Raj 4014 and heat tolerant genotype WH730 was evaluated for the heat stress over 2 years in a replicated trial under optimum or timely (TS) and late sown (LS) field conditions. Parents and their RILs clearly showing variation with respect to the dTPP, dGWPP, dGNPP, dBMPP and dSL. There was differential response of genotypes under LS as compared to the TS. The field data recorded under precision planting using the dibbling method was very effective in capturing the data under both conditions. Considering the two sowing condition viz., LS and TS, mean of difference in tiller per plant (dTPP) was 1.64. While for grain no. per plant (dGNPP) and grain weight per plant (dGWPP), the mean differences observed between TS and LSwere 76.55 and 3.02 g respectively. Difference in spike length (dSL) was 1.09 cm and biomass per plant (dBMPP) showed difference of 8.41 g.


Terminal heat stress, TS, LS, dTPP, dGWPP, dGNPP, dBMPP, dSL, Wheat


*Get Access

(*Only SPR Members can get full access. Click Here to Apply and get access)

Advertisement

References


  1. Al-Khatib K, Paulsen GM (1984) Mode of high-temperature injury to wheat during grain development. Plant Physiol 61:363–368

  2. Blum A (1988) Plant breeding for stress environments. CRC Press, Boca Raton

  3. Chaturvedi RK, Joshi J, Jayaraman M, Bala G, Ravindranath NH (2012) Multi-model climate change projections for India under representative concentration pathways. Curr Sci 103(7):791–802

  4. Ferris R, Ellis RH, Wheeler TR, Hadley P (1998) Effect of high temperature stress at anthesis on grain yield and biomass of field-grown crops of wheat. Ann Bot 82:631–639

  5. Fischer and 1984. Physiological limitations to producing wheat in semi-tropical and tropical environments and possible selection criteria. p. 209–230. In Wheats for more tropical environments. Proc. Int. Symp., Mexico City. 24–28, , Sept. 1984 RA Fischer 1984 Physiological limitations to producing wheat in semi-tropical and tropical environments and possible selection criteria. p 209–230. In: Wheats for more tropical environments. Proceedings of International Symposium, Mexico City. 24–28, Sept. 1984 CIMMYT Mexico DF

  6. Hawker JS, Jenner CF (1993) High temperature affects the activity of enzymes in the committed pathway of starch synthesis in developing wheat endosperm. Aust J Plant Physiol 20:197–209

  7. Hedhly A, Hormaza JI, Herrero M (2009) Global warming and sexual plan reproduction. Trends Plant Sci 14:30–36

  8. Hunt LA, Van der Poorten G, Pararajasingham S (1991) Postanthesis temperature effects on duration and rate of grain-flling in some winter and spring wheats. Can J Plant sci 71:609–617

  9. IPCC (Intergovernmental Panel on Climate Change) 2007 Intergovernmental Panel on Climate Change fourth assessment report: climate change 2007. In: Synthesis report World Meteorological Organization, Geneva, Switzerland

  10. Jain M, Prasad PV, Boote KJ, Hartwell AL Jr, Chourey PS (2007) Effects of season-long high temperature growth conditions on sugar-to-starch metabolism in developing microspores of grain sorghum (Sorghum bicolor L. Moench). Planta 227:67–79

  11. Jennifer B, Ramanathan V (2014) Recent climate and air pollution impacts on Indian agriculture. PNAS. https://doi.org/10.1073/pnas.1317275111

  12. Ji X, Shiran B, Wan J, Lewis DC, Jenkins CLD, Condon AG, Richards RA, Dolferus R (2010) Importance of pre-anthesis anther sink strength for maintenance of grain number during reproductive stage water stress in wheat. Plant Cell Environ 33:926–942

  13. Johnson RC, Kanemasu ET (1983) Yield and development varieties and for predicting maturity dates of wheat. Amer. of winter wheat at elevated temperatures. Agron J 75:561–565

  14. Joshi AK, Mishra B, Chatrath R, Ortiz Ferrara G, Singh RP (2007) Wheat improvement in India: present status, emerging challenges and future prospects. Euphytica 157:431–446

  15. Lal M, Singh KK, Rathore LS, Srinivasan G, Saseendran SA (1998) Vulnerability of rice and wheat yields in NW India to future changes in climate. Agr Forest Meterol 89:101–114

  16. Lobell DB, Burke MB, Tebald C, Mastrandrea MD, Falcon WP, Naylor RL (2008) Prioritizing climate change adaptation needs for food security in 2030. Science 319:607–610

  17. Lobell DB, Sibley A, Ivan Ortiz-Monasterio J (2012) Extreme heat effects on wheat senescence in India. Nat Clim Change. https://doi.org/10.1038/NCLIMATE1356

  18. McDonald GK, Sutton BG, Ellison FW (1983) The effects of time of sowing on the grain yield of irrigated wheat in Namoi Valley, New South Wales. Aust J Agric Res 34:229–240

  19. Mitchell RAC, Mitchell VJ, Driscoll SP, Franklin J, Lawlor D (1993) Effects of increased CO2 concentration and temperature on growth and yield of winter wheat at two levels of nitrogen application. Plant Cell Environ 16:521–529

  20. Mondal S, Singh RP, Crossa J, Huerta-Espino J, Sharma I, Chatrath R, Singh GP, Sohu VS, Mavi GS, Sukuru VSP, Kalappanavar IK, Mishra VK, Hussain M, Gautam NR, Uddin J, Barma NCD, Hakim A, Joshi AK (2013) Earliness in wheat: a key to adaptation under terminal and continual high temperature stress in South Asia. Field Crop Res 151:19–26

  21. Paliwal R, Roder MS, Kumar U, Srivastava JP, Joshi AK (2012) QTL mapping of terminal heat tolerance in hexaploid wheat (T.aestivum L.). Theor Appl Genet 125:561–575

  22. Pandey GC, Sareen S, Siwach P, Tiwari R 2014 Molecular characterization of heat tolerance in bread wheat (Triticum aestivum L.) using differences in thousand grain weights (dTGW) as a potential indirect selection criterion. Cereal Res Commun 42(1), 38–46.

  23. Pandey GC, Mamrutha HM, Tiwari R, Sareen S, Bhatia S, Tiwari V, Sharma I (2015) Physiological traits associated with heat tolerance in bread wheat (Triticum aestivum L.). Physiol Mol Biol Plants 21(1), 93–99.

  24. Prasad PVV, Djanaguiraman M (2011) High night temperature decreases leaf photosynthesis and pollen function in grain sorghum. Funct Plant Biol 38:993–1003

  25. Randall PJ, Moss HJ (1990) Some effects of temperature regime during grain filling on wheat quality. Aust J Agric Res 41:603–617

  26. Rane J, Nagarajan S (2004) High temperature index-for field evaluation of heat tolerance in wheat varieties. Agri Syst 79:243–255

  27. Rane J, Shoran J, Nagarajan S (2000) Heat stress environments and impact on wheat productivity in India: guestimate of losses. Ind Wheat News Lett 6(1):5–6

  28. Saini HS, Aspinall D (1982) Abnormal sporogenesis in wheat (Triticum aestivum L.) induced by short period of high temperature. Ann Bot 49:835–846

  29. Sharma RC, Duveiller E, Ortiz-Ferrara G (2007) Progress and challenge towards reducing wheat spot blotch threat in the Eastern Gangetic Plains of South Asia: is climate change already taking its toll? Field Crop Res 103:109–118

  30. Slafer GA, Rawson HM (1994) Sensitivity of wheat phasic development to major environmental factors: a re-examination of some assumptions made by physiologists and modellers. Aust J Plant Physiol 21:393–426

  31. Sofield I, Evans LT, Cook MG, Wardlaw IF (1977) Factors influencing the rate and duration of grain filling in wheat. Aust J Plant Physiol 4:785–797

  32. Stone PJ, Nicolas ME (1994) Wheat cultivars vary widely in their responses of grain yield and quality to short periods of postanthesis heat stress. Aust J Plant Physiol 21:887–900

  33. Stone PJ, Nicolas ME (1995) Effect of timing of heat stress during grain filling of two wheat varieties differing in heat tolerance. I Grain growth. Aust J Plant Physiol 22:927–934

  34. Tahir ISA, Nakata N (2005) Remobilization of nitrogen and carbohydrate from stems of bread wheat in response to heat stress during grain filling. J Agron Crop Sci 191:106–115

  35. Tashiro AH, Wardlaw IF (1990) The response to high temperature shock and humidity changes prior to and during the early stages of grain development in wheat. Aust J Plant Physiol 17:551–561

  36. Thorne GN, Wood DW (1987) Effects of radiation and temperature on tiller survival, grain number and grain yield in winter wheat. Ann Bot 59:413–426

  37. Wardlaw IF, Moncur L (1995) The response of wheat to high temperature following anthesis. I. The rate and duration of kernel filling. Aust J Plant Physiol 22:391–397

  38. Wardlaw IF, Dawson IA, Munibi P, Fewster R (1989) The tolerance of wheat to high temperatures during reproductive growth. I. Survey procedures and general response patterns. Aust J Agric Res 40:1–13

  39. Wheeler TR, Batts GR, Ellis RH, Hadley P, Morison JIL (1996) Growth and yield of winter wheat (Triticumaestivum L.) crops in response to CO2 and temperature. J Agric Sci 127:37–48

  40. Wheeler TR, Hong TD, Ellis RH, Batts GR, Morison JIL, Hadley P (1996) The duration and rate of grain growth, and harvest index, of wheat (Triticumaestivum L.) in response to temperature and CO2. J Exp Bot 47:623–630

  41. Willey RW, Dent JD (1969) The supply and storage of carbohydrate in wheat and barley. Agric Prog 44:43–55

  42. Wollenweber B, Porter JR, Schellberg J (2003) Lack of interaction between extreme high-temperature events at vegetative and reproductive growth stages in wheat. J Agron Crop Sci 189:142–150

  43. Yang J, Sears G, Gill BS, Paulsen GM (2002) Quantitative and molecular characterization of heat tolerance in hexaploid wheat. Euphytica 126:275–282

  44. Young LW, Wilen RW, Bonham-Smith PC (2004) High temperature stress of Brassicanapus during flowering reduces micro and mega gametophyte fertility, induces fruit abortion and disrupts seed production. J Exp Bot 55:485–495. https://doi.org/10.1093/jxb/erh038

  45. Zinn KE, Tunc-Ozdemir M, Harpe JF (2010) Temperature stress and plant sexual reproduction: uncovering the weakest links. J Exp Bot 61:1959–1968. https://doi.org/10.1093/jxb/erq053

  46.  

  47.  


  48.  


Acknowledgements


The authors acknowledge the ICAR for financial support for carrying out the work under NPTC project: Functional Genomics in wheat. Authors also thankful to Prof. Aditya Shastri, Vice-Chancellor, Banasthali Vidyapith for providing opportunity to complete my manuscript writing.


Author Information


Pandey Girish Chandra
Department of Bioscience and Biotechnology, Banasthali Vidyapith, Vanasthali, India
girish.dwr@gmail.com