Lipid content and composition of Pistacia atlantica Desf. subsp. atlantica fruits from three geographic origins in Algeria

, ,


Research Articles | Published:

Print ISSN : 0970-4078.
Online ISSN : 2229-4473.
Website:www.vegetosindia.org
Pub Email: contact@vegetosindia.org
Doi: 10.1007/s42535-022-00524-x
First Page: 1211
Last Page: 1219
Views: 556


Keywords: Atlas pistachio, Oil, Acid value, Peroxide value, Fatty acids, Phytosterols


Abstract


Atlas pistachio fruits are an important source for pharmaceutical uses and human health. However, its chemical composition has not been sufficiently exploited previously. This study, explores the characteristics and chemical composition of the fruit oil of three populations of Pistacia atlantica Desf. subsp. atlantica grown in three different zones in Algeria (Tiaret T-R, Tiaret T-Z and Laghouat). The oil content has ranged from 50.5 to 67.3% registered in Tiaret (T-R) and Laghouat, respectively. Moreover, the acid index and peroxide value highlighted mean values about of 8.98–25.8 mg KOH/g oil and 0.6–1.4 meq O2/kg oil respectively. The determination of fatty acids composition by gas chromatography showed that this species is mainly rich in unsaturated fatty acid (UFA). The limited values of UFA are 74.4 for Tiaret (T-R) and 76.4% for Laghouat. Its main compounds were oleic (39.1–49%), linoleic (23.6–31%) and palmitic (21.3–23.6%) acids. Also, the β-sitosterol is the main composant of phytosterols which is largely abundant in the extracted oil where its value exceeded 72.8 mg 100 g−1. In summary, the fruit oil of Atlas pistachio is mainly rich in UFA and sterol, which take an important place in several fields. Therefore, it will be important that this species could be exploited in Algeria.


Atlas pistachio, Oil, Acid value, Peroxide value, Fatty acids, Phytosterols


*Get Access

(*Only SPR Members can get full access. Click Here to Apply and get access)

Advertisement

References


Abe K, Araki E, Suzuki Y, Toki S, Saika H (2018) Production of high oleic/low linoleic rice by genome editing. Plant Physiol Biochem 131:58–62. https://doi.org/10.1016/j.plaphy.2018.04.033


Ahmed MA, Hassan T, Zahran H (2021) Heterosis for seed, oil yield and quality of some different hybrids sunflower. OCL 28:25. https://doi.org/10.1051/ocl/2021010


Ali R, Saeed S, Ali S, Sayed S, Ahmed R, Mobin L (2018) Effect of black gram flour as egg replacer on microstructure of biscuit dough and its impact on edible qualities. J Food Meas Charact 12(3):1641–1647. https://doi.org/10.1007/s11694-018-9779-3


Bates P, Stymne S, Ohlrogge J (2013) Biochemical pathways in seed oil synthesis. Curr Opin Plant Biol 16(3):358–364. https://doi.org/10.1016/j.pbi.2013.02.015


Ben Ahmed Z, Yousfi M, Viaene J, Dejaegher B, Demeyer K, Heyden Y (2021) Four Pistacia atlantica subspecies (atlantica, cabulica, kurdica and mutica): a review of their botany, ethnobotany, phytochemistry and pharmacology. J Ethnopharmacol 265:113329. https://doi.org/10.1016/j.jep.2020.113329


Brufau G, Canela M, Rafecas M (2008) Phytosterols: physiologic and metabolic aspects related to cholesterol-lowering properties. Nutr Res 28(4):217–225. https://doi.org/10.1016/j.nutres.2008.02.003


Burg VK, Grimm HS, Rothhaar TL, Grosgen S, Hundsdorfer B, Haupenthal VJ, Zimmer VC, Mett J, Weingartner O, Laufs U, Broersen LM, Tanila H, Vanmierlo T, Lutjohann D, Hartmann T, Grimm MOW (2013) Plant sterols the better cholesterol in Alzheimer’s disease? A mechanistical study. J Neurosci 33(41):16072–16087. https://doi.org/10.1523/jneurosci.1506-13.2013


Chelghoum M, Guenane H, Harrat M, Yousfi M (2020) Total tocopherols, carotenoids, and fatty acids content variation of Pistacia atlantica from different organs’ crude oils and their antioxidant activity during development stages. Chem Biodivers 17(9):e2000117. https://doi.org/10.1002/cbdv.202000117


Chen J, Liu H (2020) Nutritional indices for assessing fatty acids: a mini-review. Int J Mol Sci 21(16):5695. https://doi.org/10.3390/ijms21165695


Codex Alimentarius (standard CXS 19-1981) STANDARD FOR EDIBLE FATS AND OILS NOT COVERED BY INDIVIDUAL STANDARDS CXS 19-1981 Formerly CAC/RS 19-1969. Adopted in 1981. Revised in 1987, 1999. Amended in 2009, 2013, 2015, 2017, 2019


Dar A, Choudhury A, Kancharla P, Arumugam N (2017) The FAD2 gene in plants: occurrence, regulation, and role. Front Plant Sci. https://doi.org/10.3389/fpls.2017.01789


Farhoosh R, Tavakoli J, Khodaparast M (2008) Chemical composition and oxidative stability of kernel oils from two current subspecies of Pistacia atlantica in Iran. JAOCS 85(8):723–729. https://doi.org/10.1007/s11746-008-1258-2


Garcés R, Mancha M (1991) In vitro oleatedesaturase in developing sunflower seeds. Phytochemistry 30(7):2127–2130. https://doi.org/10.1016/0031-9422(91)83599-G


Gharsallaoui M, Azouzi H, Chelli-Chaabouni A, Ghrab M, Condoret JS, Ayadi M, Gabsi S (2016) Extraction methods of seed oil and oil quality of Pistacia atlantica grown in dry land. In: Kodad O, López-Francos A, Rovira M, Socias i Company R (eds) XVI GREMPA Meeting on Almonds and Pistachios. Zaragoza: CIHEAM, 2016, pp 287–290. http://om.ciheam.org/om/pdf/a119/00007409.pdf


Godswill N, Constant L, Martin B, Kingsley T, Albert D, Thierry K, Sastile M, Hermine N, Emmanuel Y (2016) Effects of dietary fatty acids on human health: focus on palm oil from Elaeis guineensis Jacq and useful recommendations. Food Public Health 6(3):75–85. https://doi.org/10.5923/j.fph.20160603.03


Gotoh N, Wada S (2006) The importance of peroxide value in assessing food quality and food safety. JAOCS 83(5):473–474. https://doi.org/10.1007/s11746-006-1229-4


Gravé G, Mouloungui Z, Poujaud F, Cerny M, Pauthe C, Koumba I, Diakaridja N, Merah O (2019) Accumulation during fruit development of components of interest in seed of Chia (Salvia hispanica L.) cultivar Oruro© released in France. OCL 26:50. https://doi.org/10.1051/ocl/2019037


Guenane H, Bombarda I, Ould Elhadj M, Yousfi M (2015) Effect of maturation degree on composition of fatty acids and tocopherols of fruit oil from Pistacia atlantica growing wild in Algeria. Nat Prod Commun 10(10):1934578X1501001. https://doi.org/10.1177/1934578X1501001023


Kumar MSS, Mawlong I, Ali K, Tyagi A (2018) Regulation of phytosterol biosynthetic pathway during drought stress in rice. Plant Physiol Biochem 129:11–20. https://doi.org/10.1016/j.plaphy.2018.05.019


Labdelli A, Zemour K, Simon V, Cerny M, Adda A, Merah O (2019a) Pistacia Atlantica Desf: A source of healthy vegetable oil. Appl Sci 9(12):2552. https://doi.org/10.3390/app9122552


Labdelli A, Adda A, Bouchenafa N, Rebiai A, Zebib B, Merah O (2019b) Study of seed dormancy origins in three Atlas pistachio ecotypes (Pistacia atlantica Desf.). Appl Ecol Environ Res 17(6):13555–13565. https://doi.org/10.15666/aeer/1706_1355513565


Labdelli A, Rebiai A, Tahirine M, Adda A, Merah O (2020a) Nutritional content and antioxidant capacity of the seed and the epicarp in different ecotypes of Pistacia atlantica Desf. Subsp. atlantica. Plants 9(9):1065. https://doi.org/10.3390/plants9091065


Labdelli A, De La Herrán R, Arafeh R, Resentini F, Trainotti L, Halis Y, Adda A, Merah O (2020b) Genetic variation in damaged populations of Pistacia atlantica Desf. Plants 9(11):1541. https://doi.org/10.3390/plants9111541


Liersch A, Bocianowski J, Nowosad K, Mikołajczyk K, Spasibionek S, Wielebski F, Matuszczak M, Szała L, Cegielska-Taras T, Sosnowska K, Bartkowiak-Broda I (2020) Effect of Genotype×environment interaction for seed traits in winter oilseed rape (Brassica napus L.). Agriculture 10(12):607. https://doi.org/10.3390/agriculture10120607


Mahboubifar M, Yousefinejad S, Alizadeh M, Hemmateenejad B (2016) Prediction of the acid value, peroxide value and the percentage of some fatty acids in edible oils during long heating time by chemometrics analysis of FTIR-ATR spectra. J Iran Chem Soc 13(12):2291–2299. https://doi.org/10.1007/s13738-016-0948-1


Merah O, Mouloungui Z (2019) Tetraploid wheats: valuable source of phytosterols and phytostanols. Agronomy 9(4):201. https://doi.org/10.3390/agronomy9040201


Merah O, Langlade N, Alignan M, Roche J, Pouilly N, Lippi Y, Bouniols A, Vear F, Cerny M, Mouloungui Z, Vincourt P (2012) Genetic control of phytosterol content in sunflower seeds. Theor Appl Gen 125:1589–1601. https://doi.org/10.1007/s00122-012-1937-0


Moreau R, Nyström L, Whitaker B, Winkler-Moser J, Baer D, Gebauer S, Hicks K (2018) Phytosterols and their derivatives: structural diversity, distribution, metabolism, analysis, and health-promoting uses. Prog Lipid Res 70:35–61. https://doi.org/10.1016/j.plipres.2018.04.001


Novidzro KM, Wokpor K, Amoussou Fagla B, Koudouvo K, Dotse K, Osseyi E, Koumaglo KH (2019) Etude de quelques paramètres physicochimiques et analyse des éléments minéraux, des pigments chlorophylliens et caroténoïdes de l’huile de graines de Griffonia simplicifolia. Int J Biol Chem Sci 13(4):2360–2373. https://doi.org/10.4314/ijbcs.v13i4.38


Onyeike EN, Oguike JU (2003) Influence of heat processing methods on the nutrient composition and lipid characterization of groundnut (Arachis hypogaea) seed pastes. Biokemistri 15(1):34–43


Plat J, Baumgartner S, Vanmierlo T, Lütjohann D, Calkins K, Burrin D, Guthrie G, Thijs C, Te Velde A, Vreugdenhil A, Sverdlov R, Garssen J, Wouters K, Trautwein E, Wolfs T, van Gorp C, Mulder M, Riksen N, Groen A, Mensink R (2019) Plant-based sterols and stanols in health & disease: “Consequences of human development in a plant-based environment?” Prog Lipid Res 74:87–102. https://doi.org/10.1016/j.plipres.2019.02.003


Roche J, Mouloungui Z, Cerny M, Merah O (2019) Effect of sowing dates on fatty acids and phytosterols patterns of Carthamus tinctorius L. Appl Sci 9(14):2839. https://doi.org/10.3390/app9142839


Rogowska A, Szakiel A (2020) The role of sterols in plant response to abiotic stress. Phytochem Rev 19:1525–1538. https://doi.org/10.1007/s11101-020-09708-2


Rokosik E, Dwiecki K, Siger A (2020) Nutritional quality and phytochemical contents of cold pressed oil obtained from chia, milk thistle, nigella, and white and black poppy seeds. Grasas Aceites 71(3):e368. https://doi.org/10.3989/gya.0679191


Saffarzadeh A, Csapó J (1999) The effect of substituting corn with different levels of Pistacia atlantica seeds on laying hens performance in first phase of egg production. Acta Agraria Kaposváriensis 3(2):361–368


Salhi M, Gharsallaoui M, Gabsi S (2021) Tunisian Pistacia atlantica. Desf extraction process: Impact on chemical and nutritional characteristics. Eur J Lipid Sci Technol 123(11):2100013. https://doi.org/10.1002/ejlt.202100013


Samavati V, Adeli M (2014) Isolation and characterization of hydrophobic compounds from carbohydrate matrix of Pistacia atlantica. Carbohydr Polym 101:890–896. https://doi.org/10.1016/j.carbpol.2013.09.069


Scolaro B, de Andrade LFS, Castro IA (2019) Cardiovascular disease prevention: The earlier the better? A review of plant sterol metabolism and implications of childhood supplementation. Int J Mol Sci 21(1):128. https://doi.org/10.3390/ijms21010128


Shakerardekani A, Yahyazadeh S (2020) An evaluation of some physicochemical properties of wild pistachio oil in kerman province. Pistachio Health J 3(1):76–86. https://doi.org/10.22123/phj.2021.256623.1056


Shockey J, Dowd M, Mack GM, Scheffler B, Ballard L, Frelichowski J, Mason C (2017) Naturally occurring high oleic acid cottonseed oil: identification and functional analysis of a mutant allele of Gossypium barbadense fatty acid desaturase-2. Planta 245:611–622. https://doi.org/10.1007/s00425-016-2633-0


Sidorov RA, Tsydendambaev VD (2014) Biosynthesis of fatty oils in higher plants. Russ J Plant Physiol 61:1–18. https://doi.org/10.1134/S1021443714010130


Silva OLL, Macedo ARG, de Lima NEDSC, Campos KD, Araújo LCC, Tiburço X, Pinto ASO, Joele MRSP, da Silva FM, da Silva ACR, Raices RSL, da Cruz AG, Juen L, da Rocha RM (2020) Effect of environmental factors on the fatty acid profiles and physicochemical composition of oysters (Crassostrea gasar) in Amazon estuarine farming. Aquac Res 51(6):2336–2348. https://doi.org/10.1111/are.14577


Tali BA, Khuroo AA, Ganie AH, Nawchoo A (2019) Diversity, distribution and traditional uses of medicinal plants in Jammu and Kashmir (J&K) state of Indian Himalayas. J Herb Med. https://doi.org/10.1016/j.hermed.2019.100280


Thomas J, Thomas CJ, Radcliffe J, Itsiopoulos C (2015) Omega-3 fatty acids in early prevention of inflammatory neurodegenerative disease: a focus on Alzheimer’s disease. Bio Med Res Int 13:172801. https://doi.org/10.1155/2015/172801


Wu D, Jian C, Peng Q, Hou T, Wu K, Shang B, Zhao M, Wang Y, Zheng W, Ma Q, Li C, Cheng H, Wang X, Zhao L (2020) Prohibitin 2 deficiency impairs cardiac fatty acid oxidation and causes heart failure. Cell Death Dis. https://doi.org/10.1038/s41419-020-2374-7


Yahyavi F, Alizadeh-Khaledabad M, Azadmard-Damirchi S (2019) Oil quality of pistachios (Pistacia vera L.) grown in East Azarbaijan. Iran NFS J 18:12–18. https://doi.org/10.1016/j.nfs.2019.11.001


Yazdanpanah E, Baghereyanmanesh R (2015) Quantitative analysis of the seed oil from Pistacia atlantica var mutica in Boyer Ahmad. Indian J Fund Appl Life Sci 5(4):84–87


Yousfi M, Nedjmi B, Bellal R, Ben Bertal D, Palla G (2002) Fatty acids and sterols of Pistacia atlantica fruit oil. JAOCS 79(10):1049–1050. https://doi.org/10.1007/s11746-002-0601-8


Yousfi M, Nadjemi B, Belal R, Ben-Bertal D (2003) Étude des acides gras de huile de fruit de pistachier de l’Atlas algérien. OCL 10(5–6):425–427. https://doi.org/10.1051/ocl.2003.0425


Zemour K, Labdelli A, Adda A, Dellal A, Talou T, Merah O (2019) Phenol content and antioxidant and antiaging activity of safflower seed oil (Carthamus Tinctorius L.). Cosmetics 6(3):55. https://doi.org/10.3390/cosmetics6030055


Zemour K, Adda A, Labdelli A, Dellal A, Cerny M, Merah O (2021) Effects of genotype and climatic conditions on the oil content and its fatty acids composition of Carthamus tinctorius L. Seeds Agronomy 11(10):2048. https://doi.org/10.3390/agronomy11102048


Ziyad BA, Yousfi M, Heyden YV (2022) Effects of growing region and maturity stages on oil yield, fatty acid profile and tocopherols of Pistacia atlantica Desf. fruit and their implications on resulting biodiesel. Renew Energy 181:167–181. https://doi.org/10.1016/j.renene.2021.09.057


Zouzou F, Saib A, Seddik-Ameur A, Djebar H, Legseir B (2015) Chemical composition, toxicity and antioxydant activity of Pistacia atlantica Desf. subsp Oil. Res J PharmBiol Chem Sci 6(5):253–259

 


Acknowledgements



Author Information


Labdelli Amina
Scientific and Technical Research Centre for Arid Areas (CRSTRA), Biskra, Algeria

Tahirine Mohammed
Scientific and Technical Research Centre for Arid Areas (CRSTRA), Biskra, Algeria


Zemour Kamel
Laboratory of Agro-Biotechnology and Nutrition in Semi-Arid Areas, Faculty of Natural Sciences and Life, University Ibn Khaldoun, Tiaret, Algeria