Anti-oxidant and phytochemicals analysis, in–silico identification of bioactive phytochemicals from Dillenia indica L. (Dilleniaceae) fruit as a potential inhibitor for VEGFR2 protein

*Article not assigned to an issue yet

, , , , ,


Research Articles | Published:

E-ISSN: 2229-4473.
Website: www.vegetosindia.org
Pub Email: contact@vegetosindia.org
DOI: 10.1007/s42535-026-01627-5
First Page: 0
Last Page: 0
Views: 62

Keywords: n Dillenia indica L., Phytochemistry, VEGFR2, Molecular docking, Kaempferol


Abstract


Gastric cancer remains a significant global health challenge with an urgent need for novel therapeutic strategies targeting angiogenesis. The vascular endothelial growth factor receptor 2 (VEGFR2) tyrosine kinase is a critical mediator of tumour angiogenesis making it a promising target for drug development. This study aims to investigate the anti-oxidant and phytochemical composition of Dillenia indica L. (Dilleniaceae) fruit, a traditional medicinal plant and its potential as a VEGFR2 tyrosine kinase inhibitor through in–silico analysis. The methanolic extracts of Dillenia indica (MEDI) fruit has demonstrated significant anti-oxidant activity with IC50 values of 24.5 ± 2.6 µg/ml (DPPH) and 33.1 ± 0.01 µg/ml (SOD), and moderate activity of 33.9 ± 0.3 µg/ml (OH) and 44.34 ± 0.11 µg/ml (NOD). LC–MS analysis has revealed the presence of 9 natural bioactive phytocompounds among which Kaempferol showed highest VEGFR2 binding affinity (− 9.8kcal/mol) and the stability of this interaction is supported with MD simulation. ADMET profiling showed moderate solubility (− 3.86 Log mol/l), good intestinal absorption (74.29%) and moderate distribution (VDss = 1.274 log mol/L, Fraction unbound = 0.178). Present findings suggests that Dillenia indica fruit harbours promising VEGFR2 inhibitory compound (kaempferol) that could serve as lead molecule for ethnopharmacological application. Further in–vitro and in–vivo studies are required to validate these results and explore their clinical potential.

n                     Dillenia indica L., Phytochemistry, VEGFR2, Molecular docking, Kaempferol


References


Abdille MH, Singh RP, Jayaprakasha GK, Jena BS (2005) Antioxidant activity of the extracts from Dillenia indica fruits. Food Chem 90(4):891–896. https://doi.org/10.1016/j.foodchem.2004.09.002


Abengozar R, Sharma A, Sharma R (2021) Gastric cancer: lessons learned from high–incidence geographic regions. J Gastrointest Oncol 12(Suppl 2):350. https://doi.org/10.21037/jgo-2019-gi-05


Abraham MJ, Murtola T, Schulz R, Páll S, Smith JC, Hess B, Lindahl E (2015) GROMACS: high performance molecular simulations through multi-level parallelism from laptops to supercomputer. SoftwareX 1:19–25. https://doi.org/10.1016/j.softx.2015.06.001


Adjimani JP, Asare P (2015) Antioxidant and free radical scavenging activity of iron chelators. Toxicol Rep 2:721–728. https://doi.org/10.1016/j.toxrep.2015.04.005


Amjad E, Sokouti B, Asnaashari B (2022) A systematic review of anti-cancer roles and mechanisms of kaempferol as a natural compound. Cancer Cell Int 22(1):260


Arjmand B, Hamidpour SK, Alavi-Moghadam S, Yavari H, Shahbazbadr A, Tavirani MR, Gilany K, Larijani B (2022) Molecular docking as a therapeutic approach for targeting cancer stem cell metabolic processes. Front Pharmacol 13:768556. https://doi.org/10.3389/fphar.2022.768556


Bibi N, Shah MH, Khan N, Al-Hashimi A, Elshikh MS, Iqbal A, Ahmad S, Abbasi AM (2022) Variations in total phenolic, total flavonoid contents, and free radicals’ scavenging potential of onion varieties planted under diverse environmental conditions. Plants 11(7):950. https://doi.org/10.3390/plants11070950


Biswas S, Pandita N (2015) Phytochemical analysis and chromatographic evaluation of alcoholic extract of Dillenia indica Linn. leaves. Int J Pharm Sci Res 6(7):2799. https://doi.org/10.13040/IJPSR.0975-8232.6(7).2799-12


Bjelkmar P, Larsson P, Cuendet MA, Hess B, Lindahl E (2010) Implementation of the CHARMM force field in GROMACS: analysis of protein stability effects from correction maps, virtual interaction sites, and water models. J Chem Theory Comput 6(2):459–466. https://doi.org/10.1021/ct900549r


Borah B, Bharali R (2016) In vitro evaluation of antioxidant activities and chemo preventive potential of Dillenia indica Linn fruit on dmba induced skin papillomagenesis in mice. Int J Pharm Sci Res 7(10):4045. https://doi.org/10.13040/IJPSR.0975-8232.7


Calderon-Montano JM, Burgos-Moron E, Perez-Guerrero C, Lopez-Lazar MA (2011) Review on the dietary flavonoid kaempferol. Mini Rev Med Chem 11:298–344. https://doi.org/10.2174/138955711795305335


Chin HK, Horng CT, Liu YS, Lu CC, Su CY, Chen PS, Chiu HY, Tsai FJ, Shieh PC, Yang JS (2018) Kaempferol inhibits angiogenic ability by targeting VEGF receptor-2 and downregulating the PI3K/AKT, MEK and ERK pathways in VEGF-stimulated human umbilical vein endothelial cells. Oncol Rep 39(5):2351–2357. https://doi.org/10.3892/or.2018.6312


Das M, Sarma BP, Ahmed G, Nirmala CB, Choudhury MK (2012) In-vitro antioxidant activity total phenolic content of Dillenia indica and Garcinia pedunculata, commonly used fruits in Assamese cuisine. Free Radic Antioxid 2(2):30–36. https://doi.org/10.5530/ax.2012.2.2.6


Das SK, Das TJ, Tshering D, Tsering J, Paul D, Gupta DD, Yanka H, Taram M, Bansod S, Godugu C, Ananthan R (2019) Ethnobotanical notes on significant food and medicinal flora used by the indigenous Monpa and Nyishi communities of Arunachal Pradesh, India. Pleione 13:291–304. https://doi.org/10.26679/Pleione.13.2.2019.291-304


Evans WC (2009) Trease and Evans’ Pharmacognosy. 6th ed. Elsevier Health Sciences


Gandhi D, Mehta P (2013) Dillenia indica Linn. and Dillenia pentagyna Roxb.: pharmacognostic, phytochemical and therapeutic aspects. J Appl Pharm Sci 3(11):134–142. https://doi.org/10.7324/JAPS.2013.31124


Ghafar F, Tengku Nazrin TN, Mohd Salleh MR, Nor Hadi N, Amad N, Azahari A (2017) Total phenolic content and total flavonoid content in Moringa oleifera seed. Galeri Warisan Sains 1(1):23–25. https://doi.org/10.26480/gws.01.2017.23.25


Gogoi BJ, Tsering J, Goswami BC (2012) Antioxidant activity and phytochemical analysis of Dillenia indica L. fruit of Sonitpur, Assam, India. Int J Pharm Sci Res 3(12):4909. https://doi.org/10.13040/IJPSR.0975-8232.3(12).4909-12


Gutiérrez-del-Río I, Villar CJ, Lombó F (2016) Therapeutic uses of kaempferol: anticancer and anti-inflammatory activity. Biosynthesis Food Sources Ther Uses 15(2):71


Harrach MF, Drossel B (2014) Structure and dynamics of TIP3P, TIP4P, and TIP5P water near smooth and atomistic walls of different hydroaffinity. J Chem Phys 140(17):174501. https://doi.org/10.1063/1.4872239


Huang QW, Zhai NN, Tao H, Li DM (2018) Hirsutine induces apoptosis of human breast cancer MDA-MB-231 cells through mitochondrial pathway. Sheng Li Xue Bao 70(1):40–46


IARC (2022) Global cancer burden growing, amidst mounting need for services. International Agency for Research on Cancer, WHO, Geneva, Switzerland.


Imran M, Salehi B, Sharifi-Rad J, Aslam Gondal T, Saeed F, Imran A, Shahbaz M, Tsouh Fokou PV, Umair Arshad M, Khan H, Guerreiro SG (2019) Kaempferol: a key emphasis to its anticancer potential. Molecules 24(12):2277. https://doi.org/10.3390/molecules24122277


Kim GD (2017) Kaempferol inhibits angiogenesis by suppressing HIF-1α and VEGFR2 activation via ERK/p38 MAPK and PI3K/Akt/mTOR signaling pathways in endothelial cells. Prev Nutr Food Sci 22(4):320. https://doi.org/10.3746/pnf.2017.22.4.320


Kumar V, Prasher IB (2024) Phytochemical analysis and antioxidant activity of endophytic fungi isolated from Dillenia indica Linn. Appl Biochem Biotech 196(1):332–349. https://doi.org/10.1007/s12010-023-04498-7


Kumar D, Mallick S, Vedasiromoni JR, Pal BC (2010) Anti–leukemic activity of Dillenia indica L. fruit extract and quantification of betulinic acid by HPLC. Phytomedicine 17(6):431–435. https://doi.org/10.1016/j.phymed.2009.07.010


Kumar S, Kumar V, Prakash OM (2011) Microscopic evaluation and physiochemical analysis of Dillenia indica leaf. Asian Pac J Trop Biomed 1(5):337–340. https://doi.org/10.1016/S2221-1691(11)60076-2


Lian L, Li XL, Xu MD, Li XM, Wu MY, Zhang Y, Tao M, Li W, Shen XM, Zhou C, Jiang M (2019) VEGFR2 promotes tumorigenesis and metastasis in a pro-angiogenic-independent way in gastric cancer. BMC Cancer 19:1–15. https://doi.org/10.1186/s12885-019-5322-0


Manohar CM, Xue J, Murayyan A, Neethirajan S, Shi J (2017) Antioxidant activity of polyphenols from Ontario grown onion varieties using pressurized low polarity water technology. J Funct Foods 31:52–62. https://doi.org/10.1016/j.jff.2017.01.037.doi:10.1016/j.jff.2017.01.037


Marcocci L, Maguire JJ, Packer L (1994) Nitecapone: a nitric oxide radical scavenger. Biochem Mol Biol Int 34(3):531–541


Muhamad Fadzil NS, Sekar M, Gan SH, Bonam SR, Wu YS, Vaijanathappa J, Ravi S, Lum PT, Dhadde SB (2021) Chemistry, pharmacology and therapeutic potential of swertiamarin – a promising natural lead for new drug discovery and development. Drug des Devel Ther 15:2721–2746. https://doi.org/10.2147/DDDT.S299753


Nicolas G, Diemand A, Manuel CP, Torsten S (1994) Swiss-PdbViewer aka DeepView v4.1. Swiss Institute of Bioinformatics. https://spdbv.unil.ch/


Padmavathi D, Deshpande N, Sarala A (2011) Dillenia indica: a review on morphology, phytochemistry and pharmacological aspects. Res J Pharm Technol 4(7):1037–1039


Pei J, Chen A, Zhao L, Cao F, Ding G, Xiao W (2017) One-pot synthesis of hyperoside by a three-enzyme cascade using a UDP-galactose regeneration system. J Agric Food Chem 65(29):6042–6048. https://doi.org/10.1021/acs.jafc.7b02320


Perme N, Choudhury SN, Choudhury R, Natung T, De B (2015) Medicinal plants in traditional use at Arunachal Pradesh, India. Int J Phytopharm 5(5):86–98. https://doi.org/10.7439/ijpp


Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE (2004) UCSF chimera--a visualization system for exploratory research and analysis. J Comput Chem 25(13):1605–1612. https://doi.org/10.1002/jcc.20084


POWO (2024) Plants of the World Online. Trustee of the Royal Botanic Garden, Kew, UK. https://powo.science.kew.org/taxon/urn:lsid:ipni.org:names:316684-1


Robak J, Gryglewski RJ (1988) Flavonoids are scavengers of superoxide anions. Biochem Pharmacol 37(5):837–841


Saikia D, Kesavan R, Inbaraj SB, Dikkala PK, Nayak PK, Sridhar K (2023) Bioactive compounds and health-promoting properties of elephant apple (Dillenia indica L.): a comprehensive review. Foods 12(16):2993. https://doi.org/10.3390/foods12162993


Sethi A, Joshi K, Sasikala K, Alvala M (2019) Molecular docking in modern drug discovery: principles and recent applications. Drug Discov Dev New Adv 2:1–21. https://doi.org/10.5772/intechopen.85991


Shahbaz M, Imran M, Alsagaby SA, Naeem H, Al Abdulmonem W, Hussain M, Abdelgawad MA, El-Ghorab AH, Ghoneim MM, El-Sherbiny M, Atoki AV (2023) Anticancer, antioxidant, ameliorative and therapeutic properties of kaempferol. Int J Food Prop 26(1):1140–1166. https://doi.org/10.1080/10942912.2023.2205040


Smyth EC, Nilsson M, Grabsch HI, van Grieken NC, Lordick F (2020) Gastric cancer. Lancet 396(10251):635–648


Trott O, Olson AJ (2010) AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem 31(2):455–461. https://doi.org/10.1002/jcc.21334


Wang X, Yang Y, An Y, Fang G (2019) The mechanism of anticancer action and potential clinical use of kaempferol in the treatment of breast cancer. Biomed Pharmacother 117:109086. https://doi.org/10.1016/j.biopha.2019.109086


Yeshwante SB, Juvekar AR, Nagmoti DM, Wankhede SS, Shah AS, Pimprikar RB, Saindane DS (2009) Anti-inflammatory activity of methanolic extracts of Dillenia indica L. leaves. J Young Pharm 1(1):63. https://doi.org/10.4103/0975-1483.51885


Yuan Y, Cao D, Zhang Y, Ma J, Qi J, Wang Q, Lu G, Wu Y, Yan J, Shi Y, Zhang X (2017) Cryo-EM structures of MERS-CoV and SARS-CoV spike glycoproteins reveal the dynamic receptor binding domains. Nat Commun 8(1):15092. https://doi.org/10.1038/ncomms15092


Zhang R, Li G, Zang Q, Tang Q, Huang J, Hu C, Liu Y, Wang Q, Liu W, Gao N, Zhou S (2018) Hirsutine induces mPTP-dependent apoptosis through ROCK1/PTEN/PI3K/GSK3β pathway in human lung cancer cells. Cell Death Dis 9:598. https://doi.org/10.1038/s41419-018-0641-7

 


Author Information


Higher Plant Systematics and Ethnobotanical Research Laboratory, Department of Botany, Rajiv Gandhi University, Doimukh, India