In vitro growth performance of Psidium guajava and P. guineense plantlets as affected by culture medium formulations


Research Articles | Published:

Print ISSN : 0970-4078.
Online ISSN : 2229-4473.
Website:www.vegetosindia.org
Pub Email: contact@vegetosindia.org
Doi: 10.1007/s42535-020-00125-6
First Page: 435
Last Page: 445
Views: 1798


Keywords: Myrtaceae, Micropropagation, Nutritional analysis, Psidium guajava , Pisidium guineense , Photosynthetic pigments


Abstract


The adjustment of protocols for the in vitro culture is fundamental for the conservation and application of biotechnological techniques of Psidium spp. This study has been aimed to determine the most appropriate culture medium formulation for the in vitro culture of Psidium guajava ‘Paluma’ (cv. GP) and a wild relative species, P. guineense. Seedlings of three accessions (Y93, Y95, and Y97) of P. guineense and cv. GP, previously germinated in vitro, were inoculated in the JADS, MS, and WPM culture media. After 110 days of culture, the growth morpho-physiological and nutritional parameters were assayed in the guava shoots. The use of JADS culture medium led to the highest growth in both guava species. The largest stomatal index was observed in the abaxial leaf surface of the plants grown in JADS, except for the accession Y97, which showed higher values in MS. The nutritional analysis revealed that the accumulation of nutrients in P. guineense shoots did not coincide with the composition of the culture media. Present studies conclude that the in vitro growth of the plants was influenced by the composition of the culture medium, being JADS the most indicated for the micropropagation of these guava plant species.


Myrtaceae, Micropropagation, Nutritional analysis, 
                Psidium guajava
              , 
                Pisidium guineense
              , Photosynthetic pigments


*Get Access

(*Only SPR Members can get full access. Click Here to Apply and get access)

Advertisement

References


  1. Aguiar TV, Sant’anna-Santos BF, Azevedo AA, Ferreira RS (2007) Anati Quanti: quantitative analysis software for plant anatomy studies. Planta Daninha 25:649–659

  2. Alanagh EN, Garoosi G, Haddad R, Maleki S, Landín M, Gallego PP (2014) Design of tissue culture media for efficient Prunus rootstock micropropagation using artificial intelligence models. Plant Cell Tissue Organ Cult 117:349–359

  3. Andrade WF, Almeida M, Gonçalves AN (2006) Multiplicação in vitro de Eucalyptus grandis sob estímulo com benzilaminopurina. Pesq Agropec Bras 41:1715–1719

  4. Balisteiro DM, Alezandro MR, Genovese MI (2013) Characterization and effect of clarified araçá (Psidium guineenses Sw.) juice on postprandial glycemia in healthy subjects. Ciênc Tecnol Aliment 33:66–74

  5. Batista DS, Dias LLC, Rêgo MM, Saldanha CW, Otoni WC (2017) Flask sealing on in vitro seed germination and morphogenesis of two types of ornamental pepper explants. Cienc Rural 47:1–6

  6. Bhojwani SS, Dantu PK (2013) Plant tissue culture: an introductory text. Springer, New Delhi

  7. Borges SR, Xavier A, Oliveira LS, Melo LA, Rosado AM (2011) Enraizamento de miniestacas de clones híbridos de Eucalyptus globulus. Rev Arvore 35:425–434

  8. Bravo VCD, Gonçalves AN, Dias CTS, Vencovsky R (2008) Controle genético da regeneração in vitro em progênies de Eucalyptus grandis. Cienc Rural 38:2181–2185

  9. Brondani GE, Wit Ondas HW, Baccarin FJB, Gonçalves AN, Almeida M (2012) Micropropagation of Eucalyptus benthamii to form a clonal micro-garden.  In Vitro Cell Dev Biol Plant 48:478–487

  10. Cordeiro GM, Brondani GE, Oliveira LS, Almeida M (2014) Meio de cultura, BAP e ANA na multiplicação in vitro de clones de Eucalyptus globulus Labill. Sci Forestalis 42:337–344

  11. Correia D, Gonçalves AN, Couto HYZ, Ribeiro MC (1995) Efeito do meio de cultura líquido e sólido no crescimento e desenvolvimento de gemas de Eucalyptus grandis x Eucalyptus urophylla na multiplicação in vitro. IPEF 48(49):107–116

  12. Cruz CD (2013) GENES—a software package for analysis in experimental statistics and quantitative genetics. Acta Sci Agron 35:271–276

  13. Dibax R, Quisen RC, Bona C, Quoirin M (2010) Plant regeneration from cotyledonary explants of Eucalyptus camaldulensis Dehn and histological study of organogenesis in vitro. Braz Arch Biol Technol 53:311–318

  14. EMPRESA BRASILEIRA DE PESQUISA AGROPECUÁRIA–EMBRAPA (2009) Manual de análises químicas de solos, plantas e fertilizantes, 2nd edn. Embrapa Informação Tecnológica, Brasília

  15. Engelsberger WR, Schulze WX (2012) Nitrate and ammonium lead to distinct global dynamic phosphorylation patterns when resupplied to nitrogen-starved Arabidopsis seedlings. Plant J 69:978–995

  16. Faria DV, Correia LNF, Matos EM, Souza MVC, Batista DS et al (2019) Wounding and medium formulation affect de novo shoot organogenic responses in hypocotyl-derived explants of annatto (Bixa orellana L.). In Vitro Cell Dev Biol Plant 55:277–289

  17. Fernandes TG, Mesquita ARC, Randau KP, Franchitti AA, Ximenes EA (2012) In vitro synergistic effect of Psidium guineense (Swartz) in combination with antimicrobial agents against Methicillin-resistant Staphylococcus aureus strains. Sci World J 2012:1–7

  18. Franzon RC, Campos LZO, Proença CEB, Sousa-Silva JC (2009) Araçás do gênero Psidium: Principais espécies, ocorrência, descrição e usos. Embrapa Cerrados, Planaltina

  19. George EF, De Klerk GJ (2008) The components of plant tissue culture media. I: Macro and micro-nutrients. In: George EF, Hall MA, de Klerk GJ (eds) Plant propagation by tissue culture, 3rd edn. Springer, Dordrecht, pp 65–114

  20. Glocke P, Delaporte K, Collins G, Sedgley M (2006) Micropropagation of juvenile tissue of Eucalyptus erythronema x Eucalyptus stricklandii cv. ‘urrbrae gem’. In Vitro Cell Dev Biol Plant 42:139–143

  21. Gomes VM, Souza RM, Silveira SF, Almeida AM (2013) Guava decline: effect of root exudates from Meloidogyne enterolobii-parasitized plants on Fusarium solani in vitro and on growth and development of guava seedlings under controlled conditions. Eur J Plant Pathol 137:393–401

  22. González AMN, González MBR, Pinto NLS (2005) Estudio fitoquímico e actividad antibacterial de Psidium guineense Sw (choba) frente a Streptococcus mutans, agente causal de caries dentales. Rev Cubana Plantas Medic 1:3–4

  23. Haminiuk CWI, Plata-Oviedo MSV, Guedes AR, Stafussa AP, Bona E et al (2011) Chemical, antioxidant and antibacterial study of Brazilian fruits. Int J Food Sci Tech 46:1529–1537

  24. Hartmann HT, Kester DE, Davies Junior FT, Geneve RL (2011) Plant propagation: principles and practices, 8th edn. Prentice-Hall, New Jersey

  25. Husman M, Butt M, Fatima B (2012) Enhanced in vitro multiple shoot induction in elite Pakistani guava cultivars for efficient clonal plant multiplication. Afr J Biotechnol 11:10182–10187

  26. Jaiswal VS, Amin MN (1992) Guava and jack fruit. In: Hammerschlag FA, Litz RE (eds) Biotechnology of perennial fruit crops. CAB International, Wallingford, pp 421–432

  27. Landrum LR, Kawasaki ML (1997) The genera of Myrtaceae in Brazil: an illustrated synoptic treatment and identification keys. Brittonia 49:508–536

  28. Liu X, Yang G (2011) Clonal propagation of guava (Psidium guajava L.) on nodal explants of mature elite cultivar. Int J Plant Biol 2:7–10

  29. Lloyd G, McCown BH (1980) Commercially-feasible micropropagation of Mountain Laurel, Kalmia latifolia, by shoot tip culture. Comb Proc Intl Plant Prop Soc 30:421–427

  30. Maghrebi M, Nocito FF, Sacchi GA (2014) Monitoring plant nutritional status. In: Hawkesford MM, Kopriva S, de Kok L (eds) Nutrient use efficiency in plants. Plant Ecophysiology, vol. 10, pp 253–272

  31. Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant 15:473–497

  32. Nachtigal JC, Hoffmann A, Kluge RA, Fachinello JC, Mazzini ARA (1994) Enraizamento de estacas semilenhosas de araçazeiro (P. cattleyanum Sabine) com o uso do ácido indolbutírico. Rev Bras Frutic 16:229–235

  33. Nascimento KF, Moreira FMF, Santos JA, Kassuya CAL, Croda JHR et al (2018) Antioxidant, anti-inflammatory, antiproliferative and antimycobacterial activities of the essential oil of Psidium guineense Sw. and spathulenol. J Ethnopharmacol 210:351–358

  34. Oberschelp GPJ, Gonçalves AN (2016) Assessing the effects of basal media on the in vitro propagation and nutritional status of Eucalyptus dunnii Maiden.  In Vitro Cell Dev Biol Plant 52:28–37

  35. Oliveira-Cauduro Y, Adamuchio LG, Degenhardt-Goldbach J, Bespalhok Filho JC, Dibax R et al (2014) Organogênese indireta a partir de explantes foliares e multiplicação in vitro de brotações de Eucalyptus benthamii x Eucalyptus dunnii. Cienc Florestal 24:347–355

  36. Phillips GC, Garda M (2019) Plant tissue culture media and practices: an overview. In Vitro Cell Dev Biol Plant 55:242–257

  37. Pinto G, Silva S, Park YS, Neves L, Araújo C et al (2008) Factors influencing somatic embryogenesis induction in Eucalyptus globulus Labill.: basal medium and anti-browning agents. Plant Cell Tissue Organ Cult 95:79–88

  38. Poothong S, Reed BM (2014) Modeling the effects of mineral nutrition for improving growth and development of micropropagated red raspberries. Sci Hortic 165:132–141

  39. Poothong S, Reed BM (2015) Increased CaCl2, MgSO4, and KH2PO4 improve the growth of micropropagated red raspberries.  In Vitro Cell Dev Biol Plant 51:648–658

  40. Poothong S, Reed BM (2016) Optimizing shoot culture media for Rubus germplasm: the effects of NH4+, NO3−, and total nitrogen.  In Vitro Cell Dev Biol Plant 52:265–275

  41. Rai MK, Jaiswal VS, Jaiswa U (2009) Shoot multiplication and plant regeneration of guava (Psidium guajava L.) from nodal explants of in vitro raised plantlets. J Fruit Ornam Plant Res 17:29–38

  42. Ramage CM, Williams RR (2002) Mineral nutrition and plant morphogenesis. In Vitro Cell Dev Biol Plant 38:116–124

  43. Reed BM, Wada S, Denoma J, Niedz RP (2013a) Mineral nutrition influences physiological responses of pear in vitro. In Vitro Cell Dev Biol Plant 49:699–709

  44. Reed BM, Wada S, Denoma J, Niedz RP (2013b) Improving in vitro mineral nutrition for diverse pear germplasm. In Vitro Cell Dev Biol Plant 49:343–355

  45. Rodrigues CG, Ferreira PRB, Mendes CSO, Reis Junior R, Valerio HM et al (2014) Antibacterial activity of tannins from Psidium guineense Sw. (Myrtaceae). J Med Plant Res 8:1095–1100

  46. Santos RP, Cruz ACF, Iarema L, Kuki KN, Otoni WC (2008) Protocolo para extração de pigmentos foliares em porta-enxertos de videira micropropagados. Rev Ceres 55:356–364

  47. Santos MAC, Queiroz MA, Santos AS, Santos LC, Carneiro PCS (2014) Diversidade genética entre acessos de araçá de diferentes municípios do semiárido baiano. Rev Caatinga 27:48–57

  48. Santos MAC, Queiroz MA, Bispo JDS, Dantas BF (2015) Seed germination of Brazilian guava (Psidium guineense Swartz.). J Seed Sci 37:214–221

  49. Santos MAC, Rego MM, Queiroz MA, Dantas BF, Otoni WC (2016) Synchronizing the in vitro germination of Psidium guineense Sw. seeds by means of osmotic priming. Rev Árvore 40:649–660

  50. Segatto FB, Bisognin DA, Benedetti M, Costa LC, Rampelotto MV et al (2004) Técnica para o estudo da anatomia da epiderme foliar de batata. Ciênc Rural 34:1597–1601

  51. Shah ST, Zamir R, Ahmad J, Ali H, Lutfullah G (2008) In vitro regeneration of plantlets from seedling explants of Guava (Psidium guajava L.) cv. Safeda. Pakistan J Bot 40:1195–1200

  52. Shahzad A, Sharma S, Parveen S, Saeed T, Shaheen A et al (2017) Historical perspective and basic principles of plant tissue culture. In: Abdin M, Kiran U, Ali AK (eds) Plant biotechnology: principles and applications. Springer, Singapore, pp 1–36

  53. Silva JD, Luz AIR, Silva MHL, Andrade EHA, Zoghbi MGB et al (2003) Essential oils of the leaves and stems of four Psidium spp. Flavour Fragr J 18:240–243

  54. Singh SK, Meghwal PR, Sharma HC, Singh SP (2002) Direct shoot organogenesis on hypocotyl explants from in vitro germinated seedlings of Psidium guajava L. cv. Allahabad Safeda.  Sci Hortic 95:213–221

  55. Sotiropoulos TE, Mouhtaridou GN, Thomidis T, Tsirakoglou V, Dimassi KN et al (2005) Effects of different N-sources on growth, nutritional status, chlorophyll content, and photosynthetic parameters of shoots of the apple rootstock MM 106 cultured in vitro. Biol Plant 49:297–299

  56. Tripathi DK, Singh S, Singh S, Mishra S (2015) Micronutrients and their diverse role in agricultural crops: advances and future prospective. Acta Physiol Plant 37:139

  57. Wada S, Niedz RP, Denoma J, Reed BM (2013) Mesos components (CaCl2, MgSO4, KH2PO4) are critical for improving pear micropropagation. In Vitro Cell Dev Biol Plant 49:356–365

  58. Wada S, Niedz RP, Reed BM (2015) Determining nitrate and ammonium requirements for optimal in vitro response of diverse pear species. In Vitro Cell Dev Biol Plant 51:19–27

  59. Wellburn AR (1994) The spectral determination of chlorophylls a and b, as well as total carotenoids, using various solvents with spectrophotometers of different resolution. J Plant Physiol 144:307–313

  60. Williams RR (1993) Mineral nutrition in vitro—a mechanistic approach. Aust J Bot 41:237–251

  61. Yu C, Lv DG, Qin SJ, Yang L, Ma HY et al (2010) Changes in photosynthesis, fluorescence, and nitrogen metabolism of hawthorn (Crataegus pinnatifida) in response to exogenous glutamic acid. Photosynthetica 48:339–347


  62.  


Acknowledgements


The authors would like to thank the National Council for Scientific and Technological Development (CNPq) (Brazil), Coordination for Improvement of Higher Education Personnel (CAPES, Brazil, Financial Code 01), Research Support Foundation of the State of Minas Gerais (FAPEMIG) (Belo Horizonte, MG, Brazil), and the State University of Bahia (UNEB) (Juazeiro, BA, Brazil) for the financial support.


Author Information


dos Santos Márcia Adriana Carvalho
Centro de Ciências Agrárias, Universidade Federal da Paraíba, Areia, Brazil